Spaces:
Sleeping
Sleeping
| """ | |
| This module implements computation of hypergeometric and related | |
| functions. In particular, it provides code for generic summation | |
| of hypergeometric series. Optimized versions for various special | |
| cases are also provided. | |
| """ | |
| import operator | |
| import math | |
| from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_ | |
| from .libintmath import gcd | |
| from .libmpf import (\ | |
| ComplexResult, round_fast, round_nearest, | |
| negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int, | |
| from_rational, | |
| fzero, fone, fnone, ftwo, finf, fninf, fnan, | |
| mpf_sign, mpf_add, mpf_abs, mpf_pos, | |
| mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max, | |
| mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div, | |
| sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int, | |
| to_rational, | |
| ) | |
| from .libelefun import (\ | |
| mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin, | |
| mpf_sqrt, agm_fixed, | |
| ) | |
| from .libmpc import (\ | |
| mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow, | |
| mpc_div, mpc_add_mpf, mpc_sub_mpf, | |
| mpc_log, mpc_add, mpc_pos, mpc_shift, | |
| mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs, | |
| mpc_mpf_div, mpc_square, mpc_exp | |
| ) | |
| from .libintmath import ifac | |
| from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed | |
| class NoConvergence(Exception): | |
| pass | |
| #-----------------------------------------------------------------------# | |
| # # | |
| # Generic hypergeometric series # | |
| # # | |
| #-----------------------------------------------------------------------# | |
| """ | |
| TODO: | |
| 1. proper mpq parsing | |
| 2. imaginary z special-cased (also: rational, integer?) | |
| 3. more clever handling of series that don't converge because of stupid | |
| upwards rounding | |
| 4. checking for cancellation | |
| """ | |
| def make_hyp_summator(key): | |
| """ | |
| Returns a function that sums a generalized hypergeometric series, | |
| for given parameter types (integer, rational, real, complex). | |
| """ | |
| p, q, param_types, ztype = key | |
| pstring = "".join(param_types) | |
| fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype) | |
| #print "generating hypsum", fname | |
| have_complex_param = 'C' in param_types | |
| have_complex_arg = ztype == 'C' | |
| have_complex = have_complex_param or have_complex_arg | |
| source = [] | |
| add = source.append | |
| aint = [] | |
| arat = [] | |
| bint = [] | |
| brat = [] | |
| areal = [] | |
| breal = [] | |
| acomplex = [] | |
| bcomplex = [] | |
| #add("wp = prec + 40") | |
| add("MAX = kwargs.get('maxterms', wp*100)") | |
| add("HIGH = MPZ_ONE<<epsshift") | |
| add("LOW = -HIGH") | |
| # Setup code | |
| add("SRE = PRE = one = (MPZ_ONE << wp)") | |
| if have_complex: | |
| add("SIM = PIM = MPZ_ZERO") | |
| if have_complex_arg: | |
| add("xsign, xm, xe, xbc = z[0]") | |
| add("if xsign: xm = -xm") | |
| add("ysign, ym, ye, ybc = z[1]") | |
| add("if ysign: ym = -ym") | |
| else: | |
| add("xsign, xm, xe, xbc = z") | |
| add("if xsign: xm = -xm") | |
| add("offset = xe + wp") | |
| add("if offset >= 0:") | |
| add(" ZRE = xm << offset") | |
| add("else:") | |
| add(" ZRE = xm >> (-offset)") | |
| if have_complex_arg: | |
| add("offset = ye + wp") | |
| add("if offset >= 0:") | |
| add(" ZIM = ym << offset") | |
| add("else:") | |
| add(" ZIM = ym >> (-offset)") | |
| for i, flag in enumerate(param_types): | |
| W = ["A", "B"][i >= p] | |
| if flag == 'Z': | |
| ([aint,bint][i >= p]).append(i) | |
| add("%sINT_%i = coeffs[%i]" % (W, i, i)) | |
| elif flag == 'Q': | |
| ([arat,brat][i >= p]).append(i) | |
| add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i)) | |
| elif flag == 'R': | |
| ([areal,breal][i >= p]).append(i) | |
| add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i) | |
| add("if xsign: xm = -xm") | |
| add("offset = xe + wp") | |
| add("if offset >= 0:") | |
| add(" %sREAL_%i = xm << offset" % (W, i)) | |
| add("else:") | |
| add(" %sREAL_%i = xm >> (-offset)" % (W, i)) | |
| elif flag == 'C': | |
| ([acomplex,bcomplex][i >= p]).append(i) | |
| add("__re, __im = coeffs[%i]._mpc_" % i) | |
| add("xsign, xm, xe, xbc = __re") | |
| add("if xsign: xm = -xm") | |
| add("ysign, ym, ye, ybc = __im") | |
| add("if ysign: ym = -ym") | |
| add("offset = xe + wp") | |
| add("if offset >= 0:") | |
| add(" %sCRE_%i = xm << offset" % (W, i)) | |
| add("else:") | |
| add(" %sCRE_%i = xm >> (-offset)" % (W, i)) | |
| add("offset = ye + wp") | |
| add("if offset >= 0:") | |
| add(" %sCIM_%i = ym << offset" % (W, i)) | |
| add("else:") | |
| add(" %sCIM_%i = ym >> (-offset)" % (W, i)) | |
| else: | |
| raise ValueError | |
| l_areal = len(areal) | |
| l_breal = len(breal) | |
| cancellable_real = min(l_areal, l_breal) | |
| noncancellable_real_num = areal[cancellable_real:] | |
| noncancellable_real_den = breal[cancellable_real:] | |
| # LOOP | |
| add("for n in xrange(1,10**8):") | |
| add(" if n in magnitude_check:") | |
| add(" p_mag = bitcount(abs(PRE))") | |
| if have_complex: | |
| add(" p_mag = max(p_mag, bitcount(abs(PIM)))") | |
| add(" magnitude_check[n] = wp-p_mag") | |
| # Real factors | |
| multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \ | |
| ["AP_#".replace("#", str(i)) for i in arat] + \ | |
| ["BQ_#".replace("#", str(i)) for i in brat]) | |
| divisor = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \ | |
| ["BP_#".replace("#", str(i)) for i in brat] + \ | |
| ["AQ_#".replace("#", str(i)) for i in arat] + ["n"]) | |
| if multiplier: | |
| add(" mul = " + multiplier) | |
| add(" div = " + divisor) | |
| # Check for singular terms | |
| add(" if not div:") | |
| if multiplier: | |
| add(" if not mul:") | |
| add(" break") | |
| add(" raise ZeroDivisionError") | |
| # Update product | |
| if have_complex: | |
| # TODO: when there are several real parameters and just a few complex | |
| # (maybe just the complex argument), we only need to do about | |
| # half as many ops if we accumulate the real factor in a single real variable | |
| for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) | |
| for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) | |
| for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) | |
| for k in range(cancellable_real): add(" PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) | |
| for i in noncancellable_real_num: add(" PIM = (PIM * AREAL_#) >> wp".replace("#", str(i))) | |
| for i in noncancellable_real_den: add(" PIM = (PIM << wp) // BREAL_#".replace("#", str(i))) | |
| if multiplier: | |
| if have_complex_arg: | |
| add(" PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div") | |
| add(" PRE >>= wp") | |
| add(" PIM >>= wp") | |
| else: | |
| add(" PRE = ((mul * PRE * ZRE) >> wp) // div") | |
| add(" PIM = ((mul * PIM * ZRE) >> wp) // div") | |
| else: | |
| if have_complex_arg: | |
| add(" PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div") | |
| add(" PRE >>= wp") | |
| add(" PIM >>= wp") | |
| else: | |
| add(" PRE = ((PRE * ZRE) >> wp) // div") | |
| add(" PIM = ((PIM * ZRE) >> wp) // div") | |
| for i in acomplex: | |
| add(" PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i))) | |
| add(" PRE >>= wp") | |
| add(" PIM >>= wp") | |
| for i in bcomplex: | |
| add(" mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i))) | |
| add(" re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i))) | |
| add(" im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i))) | |
| add(" PRE = (re << wp) // mag".replace("#", str(i))) | |
| add(" PIM = (im << wp) // mag".replace("#", str(i))) | |
| else: | |
| for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) | |
| for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) | |
| for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) | |
| if multiplier: | |
| add(" PRE = ((PRE * mul * ZRE) >> wp) // div") | |
| else: | |
| add(" PRE = ((PRE * ZRE) >> wp) // div") | |
| # Add product to sum | |
| if have_complex: | |
| add(" SRE += PRE") | |
| add(" SIM += PIM") | |
| add(" if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):") | |
| add(" break") | |
| else: | |
| add(" SRE += PRE") | |
| add(" if HIGH > PRE > LOW:") | |
| add(" break") | |
| #add(" from mpmath import nprint, log, ldexp") | |
| #add(" nprint([n, log(abs(PRE),2), ldexp(PRE,-wp)])") | |
| add(" if n > MAX:") | |
| add(" raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')") | |
| # +1 all parameters for next loop | |
| for i in aint: add(" AINT_# += 1".replace("#", str(i))) | |
| for i in bint: add(" BINT_# += 1".replace("#", str(i))) | |
| for i in arat: add(" AP_# += AQ_#".replace("#", str(i))) | |
| for i in brat: add(" BP_# += BQ_#".replace("#", str(i))) | |
| for i in areal: add(" AREAL_# += one".replace("#", str(i))) | |
| for i in breal: add(" BREAL_# += one".replace("#", str(i))) | |
| for i in acomplex: add(" ACRE_# += one".replace("#", str(i))) | |
| for i in bcomplex: add(" BCRE_# += one".replace("#", str(i))) | |
| if have_complex: | |
| add("a = from_man_exp(SRE, -wp, prec, 'n')") | |
| add("b = from_man_exp(SIM, -wp, prec, 'n')") | |
| add("if SRE:") | |
| add(" if SIM:") | |
| add(" magn = max(a[2]+a[3], b[2]+b[3])") | |
| add(" else:") | |
| add(" magn = a[2]+a[3]") | |
| add("elif SIM:") | |
| add(" magn = b[2]+b[3]") | |
| add("else:") | |
| add(" magn = -wp+1") | |
| add("return (a, b), True, magn") | |
| else: | |
| add("a = from_man_exp(SRE, -wp, prec, 'n')") | |
| add("if SRE:") | |
| add(" magn = a[2]+a[3]") | |
| add("else:") | |
| add(" magn = -wp+1") | |
| add("return a, False, magn") | |
| source = "\n".join((" " + line) for line in source) | |
| source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source | |
| namespace = {} | |
| exec_(source, globals(), namespace) | |
| #print source | |
| return source, namespace[fname] | |
| if BACKEND == 'sage': | |
| def make_hyp_summator(key): | |
| """ | |
| Returns a function that sums a generalized hypergeometric series, | |
| for given parameter types (integer, rational, real, complex). | |
| """ | |
| from sage.libs.mpmath.ext_main import hypsum_internal | |
| p, q, param_types, ztype = key | |
| def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs): | |
| return hypsum_internal(p, q, param_types, ztype, coeffs, z, | |
| prec, wp, epsshift, magnitude_check, kwargs) | |
| return "(none)", _hypsum | |
| #-----------------------------------------------------------------------# | |
| # # | |
| # Error functions # | |
| # # | |
| #-----------------------------------------------------------------------# | |
| # TODO: mpf_erf should call mpf_erfc when appropriate (currently | |
| # only the converse delegation is implemented) | |
| def mpf_erf(x, prec, rnd=round_fast): | |
| sign, man, exp, bc = x | |
| if not man: | |
| if x == fzero: return fzero | |
| if x == finf: return fone | |
| if x== fninf: return fnone | |
| return fnan | |
| size = exp + bc | |
| lg = math.log | |
| # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits | |
| if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2): | |
| if sign: | |
| return mpf_perturb(fnone, 0, prec, rnd) | |
| else: | |
| return mpf_perturb(fone, 1, prec, rnd) | |
| # erf(x) ~ 2*x/sqrt(pi) close to 0 | |
| if size < -prec: | |
| # 2*x | |
| x = mpf_shift(x,1) | |
| c = mpf_sqrt(mpf_pi(prec+20), prec+20) | |
| # TODO: interval rounding | |
| return mpf_div(x, c, prec, rnd) | |
| wp = prec + abs(size) + 25 | |
| # Taylor series for erf, fixed-point summation | |
| t = abs(to_fixed(x, wp)) | |
| t2 = (t*t) >> wp | |
| s, term, k = t, 12345, 1 | |
| while term: | |
| t = ((t * t2) >> wp) // k | |
| term = t // (2*k+1) | |
| if k & 1: | |
| s -= term | |
| else: | |
| s += term | |
| k += 1 | |
| s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp) | |
| if sign: | |
| s = -s | |
| return from_man_exp(s, -wp, prec, rnd) | |
| # If possible, we use the asymptotic series for erfc. | |
| # This is an alternating divergent asymptotic series, so | |
| # the error is at most equal to the first omitted term. | |
| # Here we check if the smallest term is small enough | |
| # for a given x and precision | |
| def erfc_check_series(x, prec): | |
| n = to_int(x) | |
| if n**2 * 1.44 > prec: | |
| return True | |
| return False | |
| def mpf_erfc(x, prec, rnd=round_fast): | |
| sign, man, exp, bc = x | |
| if not man: | |
| if x == fzero: return fone | |
| if x == finf: return fzero | |
| if x == fninf: return ftwo | |
| return fnan | |
| wp = prec + 20 | |
| mag = bc+exp | |
| # Preserve full accuracy when exponent grows huge | |
| wp += max(0, 2*mag) | |
| regular_erf = sign or mag < 2 | |
| if regular_erf or not erfc_check_series(x, wp): | |
| if regular_erf: | |
| return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd) | |
| # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation | |
| n = to_int(x)+1 | |
| return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd) | |
| s = term = MPZ_ONE << wp | |
| term_prev = 0 | |
| t = (2 * to_fixed(x, wp) ** 2) >> wp | |
| k = 1 | |
| while 1: | |
| term = ((term * (2*k - 1)) << wp) // t | |
| if k > 4 and term > term_prev or not term: | |
| break | |
| if k & 1: | |
| s -= term | |
| else: | |
| s += term | |
| term_prev = term | |
| #print k, to_str(from_man_exp(term, -wp, 50), 10) | |
| k += 1 | |
| s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp) | |
| s = from_man_exp(s, -wp, wp) | |
| z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp) | |
| y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd) | |
| return y | |
| #-----------------------------------------------------------------------# | |
| # # | |
| # Exponential integrals # | |
| # # | |
| #-----------------------------------------------------------------------# | |
| def ei_taylor(x, prec): | |
| s = t = x | |
| k = 2 | |
| while t: | |
| t = ((t*x) >> prec) // k | |
| s += t // k | |
| k += 1 | |
| return s | |
| def complex_ei_taylor(zre, zim, prec): | |
| _abs = abs | |
| sre = tre = zre | |
| sim = tim = zim | |
| k = 2 | |
| while _abs(tre) + _abs(tim) > 5: | |
| tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec | |
| sre += tre // k | |
| sim += tim // k | |
| k += 1 | |
| return sre, sim | |
| def ei_asymptotic(x, prec): | |
| one = MPZ_ONE << prec | |
| x = t = ((one << prec) // x) | |
| s = one + x | |
| k = 2 | |
| while t: | |
| t = (k*t*x) >> prec | |
| s += t | |
| k += 1 | |
| return s | |
| def complex_ei_asymptotic(zre, zim, prec): | |
| _abs = abs | |
| one = MPZ_ONE << prec | |
| M = (zim*zim + zre*zre) >> prec | |
| # 1 / z | |
| xre = tre = (zre << prec) // M | |
| xim = tim = ((-zim) << prec) // M | |
| sre = one + xre | |
| sim = xim | |
| k = 2 | |
| while _abs(tre) + _abs(tim) > 1000: | |
| #print tre, tim | |
| tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec | |
| sre += tre | |
| sim += tim | |
| k += 1 | |
| if k > prec: | |
| raise NoConvergence | |
| return sre, sim | |
| def mpf_ei(x, prec, rnd=round_fast, e1=False): | |
| if e1: | |
| x = mpf_neg(x) | |
| sign, man, exp, bc = x | |
| if e1 and not sign: | |
| if x == fzero: | |
| return finf | |
| raise ComplexResult("E1(x) for x < 0") | |
| if man: | |
| xabs = 0, man, exp, bc | |
| xmag = exp+bc | |
| wp = prec + 20 | |
| can_use_asymp = xmag > wp | |
| if not can_use_asymp: | |
| if exp >= 0: | |
| xabsint = man << exp | |
| else: | |
| xabsint = man >> (-exp) | |
| can_use_asymp = xabsint > int(wp*0.693) + 10 | |
| if can_use_asymp: | |
| if xmag > wp: | |
| v = fone | |
| else: | |
| v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp) | |
| v = mpf_mul(v, mpf_exp(x, wp), wp) | |
| v = mpf_div(v, x, prec, rnd) | |
| else: | |
| wp += 2*int(to_int(xabs)) | |
| u = to_fixed(x, wp) | |
| v = ei_taylor(u, wp) + euler_fixed(wp) | |
| t1 = from_man_exp(v,-wp) | |
| t2 = mpf_log(xabs,wp) | |
| v = mpf_add(t1, t2, prec, rnd) | |
| else: | |
| if x == fzero: v = fninf | |
| elif x == finf: v = finf | |
| elif x == fninf: v = fzero | |
| else: v = fnan | |
| if e1: | |
| v = mpf_neg(v) | |
| return v | |
| def mpc_ei(z, prec, rnd=round_fast, e1=False): | |
| if e1: | |
| z = mpc_neg(z) | |
| a, b = z | |
| asign, aman, aexp, abc = a | |
| bsign, bman, bexp, bbc = b | |
| if b == fzero: | |
| if e1: | |
| x = mpf_neg(mpf_ei(a, prec, rnd)) | |
| if not asign: | |
| y = mpf_neg(mpf_pi(prec, rnd)) | |
| else: | |
| y = fzero | |
| return x, y | |
| else: | |
| return mpf_ei(a, prec, rnd), fzero | |
| if a != fzero: | |
| if not aman or not bman: | |
| return (fnan, fnan) | |
| wp = prec + 40 | |
| amag = aexp+abc | |
| bmag = bexp+bbc | |
| zmag = max(amag, bmag) | |
| can_use_asymp = zmag > wp | |
| if not can_use_asymp: | |
| zabsint = abs(to_int(a)) + abs(to_int(b)) | |
| can_use_asymp = zabsint > int(wp*0.693) + 20 | |
| try: | |
| if can_use_asymp: | |
| if zmag > wp: | |
| v = fone, fzero | |
| else: | |
| zre = to_fixed(a, wp) | |
| zim = to_fixed(b, wp) | |
| vre, vim = complex_ei_asymptotic(zre, zim, wp) | |
| v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) | |
| v = mpc_mul(v, mpc_exp(z, wp), wp) | |
| v = mpc_div(v, z, wp) | |
| if e1: | |
| v = mpc_neg(v, prec, rnd) | |
| else: | |
| x, y = v | |
| if bsign: | |
| v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) | |
| else: | |
| v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) | |
| return v | |
| except NoConvergence: | |
| pass | |
| #wp += 2*max(0,zmag) | |
| wp += 2*int(to_int(mpc_abs(z, 5))) | |
| zre = to_fixed(a, wp) | |
| zim = to_fixed(b, wp) | |
| vre, vim = complex_ei_taylor(zre, zim, wp) | |
| vre += euler_fixed(wp) | |
| v = from_man_exp(vre,-wp), from_man_exp(vim,-wp) | |
| if e1: | |
| u = mpc_log(mpc_neg(z),wp) | |
| else: | |
| u = mpc_log(z,wp) | |
| v = mpc_add(v, u, prec, rnd) | |
| if e1: | |
| v = mpc_neg(v) | |
| return v | |
| def mpf_e1(x, prec, rnd=round_fast): | |
| return mpf_ei(x, prec, rnd, True) | |
| def mpc_e1(x, prec, rnd=round_fast): | |
| return mpc_ei(x, prec, rnd, True) | |
| def mpf_expint(n, x, prec, rnd=round_fast, gamma=False): | |
| """ | |
| E_n(x), n an integer, x real | |
| With gamma=True, computes Gamma(n,x) (upper incomplete gamma function) | |
| Returns (real, None) if real, otherwise (real, imag) | |
| The imaginary part is an optional branch cut term | |
| """ | |
| sign, man, exp, bc = x | |
| if not man: | |
| if gamma: | |
| if x == fzero: | |
| # Actually gamma function pole | |
| if n <= 0: | |
| return finf, None | |
| return mpf_gamma_int(n, prec, rnd), None | |
| if x == finf: | |
| return fzero, None | |
| # TODO: could return finite imaginary value at -inf | |
| return fnan, fnan | |
| else: | |
| if x == fzero: | |
| if n > 1: | |
| return from_rational(1, n-1, prec, rnd), None | |
| else: | |
| return finf, None | |
| if x == finf: | |
| return fzero, None | |
| return fnan, fnan | |
| n_orig = n | |
| if gamma: | |
| n = 1-n | |
| wp = prec + 20 | |
| xmag = exp + bc | |
| # Beware of near-poles | |
| if xmag < -10: | |
| raise NotImplementedError | |
| nmag = bitcount(abs(n)) | |
| have_imag = n > 0 and sign | |
| negx = mpf_neg(x) | |
| # Skip series if direct convergence | |
| if n == 0 or 2*nmag - xmag < -wp: | |
| if gamma: | |
| v = mpf_exp(negx, wp) | |
| re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd) | |
| else: | |
| v = mpf_exp(negx, wp) | |
| re = mpf_div(v, x, prec, rnd) | |
| else: | |
| # Finite number of terms, or... | |
| can_use_asymptotic_series = -3*wp < n <= 0 | |
| # ...large enough? | |
| if not can_use_asymptotic_series: | |
| xi = abs(to_int(x)) | |
| m = min(max(1, xi-n), 2*wp) | |
| siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100) | |
| tol = -wp-10 | |
| can_use_asymptotic_series = siz < tol | |
| if can_use_asymptotic_series: | |
| r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp) | |
| m = n | |
| t = r*m | |
| s = MPZ_ONE << wp | |
| while m and t: | |
| s += t | |
| m += 1 | |
| t = (m*r*t) >> wp | |
| v = mpf_exp(negx, wp) | |
| if gamma: | |
| # ~ exp(-x) * x^(n-1) * (1 + ...) | |
| v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp) | |
| else: | |
| # ~ exp(-x)/x * (1 + ...) | |
| v = mpf_div(v, x, wp) | |
| re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd) | |
| elif n == 1: | |
| re = mpf_neg(mpf_ei(negx, prec, rnd)) | |
| elif n > 0 and n < 3*wp: | |
| T1 = mpf_neg(mpf_ei(negx, wp)) | |
| if gamma: | |
| if n_orig & 1: | |
| T1 = mpf_neg(T1) | |
| else: | |
| T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp) | |
| r = t = to_fixed(x, wp) | |
| facs = [1] * (n-1) | |
| for k in range(1,n-1): | |
| facs[k] = facs[k-1] * k | |
| facs = facs[::-1] | |
| s = facs[0] << wp | |
| for k in range(1, n-1): | |
| if k & 1: | |
| s -= facs[k] * t | |
| else: | |
| s += facs[k] * t | |
| t = (t*r) >> wp | |
| T2 = from_man_exp(s, -wp, wp) | |
| T2 = mpf_mul(T2, mpf_exp(negx, wp)) | |
| if gamma: | |
| T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp) | |
| R = mpf_add(T1, T2) | |
| re = mpf_div(R, from_int(ifac(n-1)), prec, rnd) | |
| else: | |
| raise NotImplementedError | |
| if have_imag: | |
| M = from_int(-ifac(n-1)) | |
| if gamma: | |
| im = mpf_div(mpf_pi(wp), M, prec, rnd) | |
| if n_orig & 1: | |
| im = mpf_neg(im) | |
| else: | |
| im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd) | |
| return re, im | |
| else: | |
| return re, None | |
| def mpf_ci_si_taylor(x, wp, which=0): | |
| """ | |
| 0 - Ci(x) - (euler+log(x)) | |
| 1 - Si(x) | |
| """ | |
| x = to_fixed(x, wp) | |
| x2 = -(x*x) >> wp | |
| if which == 0: | |
| s, t, k = 0, (MPZ_ONE<<wp), 2 | |
| else: | |
| s, t, k = x, x, 3 | |
| while t: | |
| t = (t*x2//(k*(k-1)))>>wp | |
| s += t//k | |
| k += 2 | |
| return from_man_exp(s, -wp) | |
| def mpc_ci_si_taylor(re, im, wp, which=0): | |
| # The following code is only designed for small arguments, | |
| # and not too small arguments (for relative accuracy) | |
| if re[1]: | |
| mag = re[2]+re[3] | |
| elif im[1]: | |
| mag = im[2]+im[3] | |
| if im[1]: | |
| mag = max(mag, im[2]+im[3]) | |
| if mag > 2 or mag < -wp: | |
| raise NotImplementedError | |
| wp += (2-mag) | |
| zre = to_fixed(re, wp) | |
| zim = to_fixed(im, wp) | |
| z2re = (zim*zim-zre*zre)>>wp | |
| z2im = (-2*zre*zim)>>wp | |
| tre = zre | |
| tim = zim | |
| one = MPZ_ONE<<wp | |
| if which == 0: | |
| sre, sim, tre, tim, k = 0, 0, (MPZ_ONE<<wp), 0, 2 | |
| else: | |
| sre, sim, tre, tim, k = zre, zim, zre, zim, 3 | |
| while max(abs(tre), abs(tim)) > 2: | |
| f = k*(k-1) | |
| tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp | |
| sre += tre//k | |
| sim += tim//k | |
| k += 2 | |
| return from_man_exp(sre, -wp), from_man_exp(sim, -wp) | |
| def mpf_ci_si(x, prec, rnd=round_fast, which=2): | |
| """ | |
| Calculation of Ci(x), Si(x) for real x. | |
| which = 0 -- returns (Ci(x), -) | |
| which = 1 -- returns (Si(x), -) | |
| which = 2 -- returns (Ci(x), Si(x)) | |
| Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. | |
| """ | |
| wp = prec + 20 | |
| sign, man, exp, bc = x | |
| ci, si = None, None | |
| if not man: | |
| if x == fzero: | |
| return (fninf, fzero) | |
| if x == fnan: | |
| return (x, x) | |
| ci = fzero | |
| if which != 0: | |
| if x == finf: | |
| si = mpf_shift(mpf_pi(prec, rnd), -1) | |
| if x == fninf: | |
| si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) | |
| return (ci, si) | |
| # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x | |
| mag = exp+bc | |
| if mag < -wp: | |
| if which != 0: | |
| si = mpf_perturb(x, 1-sign, prec, rnd) | |
| if which != 1: | |
| y = mpf_euler(wp) | |
| xabs = mpf_abs(x) | |
| ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) | |
| return ci, si | |
| # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2 | |
| elif mag > wp: | |
| if which != 0: | |
| if sign: | |
| si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) | |
| else: | |
| si = mpf_pi(prec, rnd) | |
| si = mpf_shift(si, -1) | |
| if which != 1: | |
| ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) | |
| return ci, si | |
| else: | |
| wp += abs(mag) | |
| # Use an asymptotic series? The smallest value of n!/x^n | |
| # occurs for n ~ x, where the magnitude is ~ exp(-x). | |
| asymptotic = mag-1 > math.log(wp, 2) | |
| # Case 1: convergent series near 0 | |
| if not asymptotic: | |
| if which != 0: | |
| si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) | |
| if which != 1: | |
| ci = mpf_ci_si_taylor(x, wp, 0) | |
| ci = mpf_add(ci, mpf_euler(wp), wp) | |
| ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) | |
| return ci, si | |
| x = mpf_abs(x) | |
| # Case 2: asymptotic series for x >> 1 | |
| xf = to_fixed(x, wp) | |
| xr = (MPZ_ONE<<(2*wp)) // xf # 1/x | |
| s1 = (MPZ_ONE << wp) | |
| s2 = xr | |
| t = xr | |
| k = 2 | |
| while t: | |
| t = -t | |
| t = (t*xr*k)>>wp | |
| k += 1 | |
| s1 += t | |
| t = (t*xr*k)>>wp | |
| k += 1 | |
| s2 += t | |
| s1 = from_man_exp(s1, -wp) | |
| s2 = from_man_exp(s2, -wp) | |
| s1 = mpf_div(s1, x, wp) | |
| s2 = mpf_div(s2, x, wp) | |
| cos, sin = mpf_cos_sin(x, wp) | |
| # Ci(x) = sin(x)*s1-cos(x)*s2 | |
| # Si(x) = pi/2-cos(x)*s1-sin(x)*s2 | |
| if which != 0: | |
| si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) | |
| si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) | |
| if sign: | |
| si = mpf_neg(si) | |
| si = mpf_pos(si, prec, rnd) | |
| if which != 1: | |
| ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) | |
| return ci, si | |
| def mpf_ci(x, prec, rnd=round_fast): | |
| if mpf_sign(x) < 0: | |
| raise ComplexResult | |
| return mpf_ci_si(x, prec, rnd, 0)[0] | |
| def mpf_si(x, prec, rnd=round_fast): | |
| return mpf_ci_si(x, prec, rnd, 1)[1] | |
| def mpc_ci(z, prec, rnd=round_fast): | |
| re, im = z | |
| if im == fzero: | |
| ci = mpf_ci_si(re, prec, rnd, 0)[0] | |
| if mpf_sign(re) < 0: | |
| return (ci, mpf_pi(prec, rnd)) | |
| return (ci, fzero) | |
| wp = prec + 20 | |
| cre, cim = mpc_ci_si_taylor(re, im, wp, 0) | |
| cre = mpf_add(cre, mpf_euler(wp), wp) | |
| ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd) | |
| return ci | |
| def mpc_si(z, prec, rnd=round_fast): | |
| re, im = z | |
| if im == fzero: | |
| return (mpf_ci_si(re, prec, rnd, 1)[1], fzero) | |
| wp = prec + 20 | |
| z = mpc_ci_si_taylor(re, im, wp, 1) | |
| return mpc_pos(z, prec, rnd) | |
| #-----------------------------------------------------------------------# | |
| # # | |
| # Bessel functions # | |
| # # | |
| #-----------------------------------------------------------------------# | |
| # A Bessel function of the first kind of integer order, J_n(x), is | |
| # given by the power series | |
| # oo | |
| # ___ k 2 k + n | |
| # \ (-1) / x \ | |
| # J_n(x) = ) ----------- | - | | |
| # /___ k! (k + n)! \ 2 / | |
| # k = 0 | |
| # Simplifying the quotient between two successive terms gives the | |
| # ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision | |
| # multiplication and one division by a small integer per term. | |
| # The complex version is very similar, the only difference being | |
| # that the multiplication is actually 4 multiplies. | |
| # In the general case, we have | |
| # J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2) | |
| # TODO: for extremely large x, we could use an asymptotic | |
| # trigonometric approximation. | |
| # TODO: recompute at higher precision if the fixed-point mantissa | |
| # is very small | |
| def mpf_besseljn(n, x, prec, rounding=round_fast): | |
| prec += 50 | |
| negate = n < 0 and n & 1 | |
| mag = x[2]+x[3] | |
| n = abs(n) | |
| wp = prec + 20 + n*bitcount(n) | |
| if mag < 0: | |
| wp -= n * mag | |
| x = to_fixed(x, wp) | |
| x2 = (x**2) >> wp | |
| if not n: | |
| s = t = MPZ_ONE << wp | |
| else: | |
| s = t = (x**n // ifac(n)) >> ((n-1)*wp + n) | |
| k = 1 | |
| while t: | |
| t = ((t * x2) // (-4*k*(k+n))) >> wp | |
| s += t | |
| k += 1 | |
| if negate: | |
| s = -s | |
| return from_man_exp(s, -wp, prec, rounding) | |
| def mpc_besseljn(n, z, prec, rounding=round_fast): | |
| negate = n < 0 and n & 1 | |
| n = abs(n) | |
| origprec = prec | |
| zre, zim = z | |
| mag = max(zre[2]+zre[3], zim[2]+zim[3]) | |
| prec += 20 + n*bitcount(n) + abs(mag) | |
| if mag < 0: | |
| prec -= n * mag | |
| zre = to_fixed(zre, prec) | |
| zim = to_fixed(zim, prec) | |
| z2re = (zre**2 - zim**2) >> prec | |
| z2im = (zre*zim) >> (prec-1) | |
| if not n: | |
| sre = tre = MPZ_ONE << prec | |
| sim = tim = MPZ_ZERO | |
| else: | |
| re, im = complex_int_pow(zre, zim, n) | |
| sre = tre = (re // ifac(n)) >> ((n-1)*prec + n) | |
| sim = tim = (im // ifac(n)) >> ((n-1)*prec + n) | |
| k = 1 | |
| while abs(tre) + abs(tim) > 3: | |
| p = -4*k*(k+n) | |
| tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im | |
| tre = (tre // p) >> prec | |
| tim = (tim // p) >> prec | |
| sre += tre | |
| sim += tim | |
| k += 1 | |
| if negate: | |
| sre = -sre | |
| sim = -sim | |
| re = from_man_exp(sre, -prec, origprec, rounding) | |
| im = from_man_exp(sim, -prec, origprec, rounding) | |
| return (re, im) | |
| def mpf_agm(a, b, prec, rnd=round_fast): | |
| """ | |
| Computes the arithmetic-geometric mean agm(a,b) for | |
| nonnegative mpf values a, b. | |
| """ | |
| asign, aman, aexp, abc = a | |
| bsign, bman, bexp, bbc = b | |
| if asign or bsign: | |
| raise ComplexResult("agm of a negative number") | |
| # Handle inf, nan or zero in either operand | |
| if not (aman and bman): | |
| if a == fnan or b == fnan: | |
| return fnan | |
| if a == finf: | |
| if b == fzero: | |
| return fnan | |
| return finf | |
| if b == finf: | |
| if a == fzero: | |
| return fnan | |
| return finf | |
| # agm(0,x) = agm(x,0) = 0 | |
| return fzero | |
| wp = prec + 20 | |
| amag = aexp+abc | |
| bmag = bexp+bbc | |
| mag_delta = amag - bmag | |
| # Reduce to roughly the same magnitude using floating-point AGM | |
| abs_mag_delta = abs(mag_delta) | |
| if abs_mag_delta > 10: | |
| while abs_mag_delta > 10: | |
| a, b = mpf_shift(mpf_add(a,b,wp),-1), \ | |
| mpf_sqrt(mpf_mul(a,b,wp),wp) | |
| abs_mag_delta //= 2 | |
| asign, aman, aexp, abc = a | |
| bsign, bman, bexp, bbc = b | |
| amag = aexp+abc | |
| bmag = bexp+bbc | |
| mag_delta = amag - bmag | |
| #print to_float(a), to_float(b) | |
| # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1 | |
| min_mag = min(amag,bmag) | |
| max_mag = max(amag,bmag) | |
| n = 0 | |
| # If too small, we lose precision when going to fixed-point | |
| if min_mag < -8: | |
| n = -min_mag | |
| # If too large, we waste time using fixed-point with large numbers | |
| elif max_mag > 20: | |
| n = -max_mag | |
| if n: | |
| a = mpf_shift(a, n) | |
| b = mpf_shift(b, n) | |
| #print to_float(a), to_float(b) | |
| af = to_fixed(a, wp) | |
| bf = to_fixed(b, wp) | |
| g = agm_fixed(af, bf, wp) | |
| return from_man_exp(g, -wp-n, prec, rnd) | |
| def mpf_agm1(a, prec, rnd=round_fast): | |
| """ | |
| Computes the arithmetic-geometric mean agm(1,a) for a nonnegative | |
| mpf value a. | |
| """ | |
| return mpf_agm(fone, a, prec, rnd) | |
| def mpc_agm(a, b, prec, rnd=round_fast): | |
| """ | |
| Complex AGM. | |
| TODO: | |
| * check that convergence works as intended | |
| * optimize | |
| * select a nonarbitrary branch | |
| """ | |
| if mpc_is_infnan(a) or mpc_is_infnan(b): | |
| return fnan, fnan | |
| if mpc_zero in (a, b): | |
| return fzero, fzero | |
| if mpc_neg(a) == b: | |
| return fzero, fzero | |
| wp = prec+20 | |
| eps = mpf_shift(fone, -wp+10) | |
| while 1: | |
| a1 = mpc_shift(mpc_add(a, b, wp), -1) | |
| b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) | |
| a, b = a1, b1 | |
| size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1] | |
| err = mpc_abs(mpc_sub(a, b, 10), 10) | |
| if size == fzero or mpf_lt(err, mpf_mul(eps, size)): | |
| return a | |
| def mpc_agm1(a, prec, rnd=round_fast): | |
| return mpc_agm(mpc_one, a, prec, rnd) | |
| def mpf_ellipk(x, prec, rnd=round_fast): | |
| if not x[1]: | |
| if x == fzero: | |
| return mpf_shift(mpf_pi(prec, rnd), -1) | |
| if x == fninf: | |
| return fzero | |
| if x == fnan: | |
| return x | |
| if x == fone: | |
| return finf | |
| # TODO: for |x| << 1/2, one could use fall back to | |
| # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x) | |
| wp = prec + 15 | |
| # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x) | |
| # The sqrt raises ComplexResult if x > 0 | |
| a = mpf_sqrt(mpf_sub(fone, x, wp), wp) | |
| v = mpf_agm1(a, wp) | |
| r = mpf_div(mpf_pi(wp), v, prec, rnd) | |
| return mpf_shift(r, -1) | |
| def mpc_ellipk(z, prec, rnd=round_fast): | |
| re, im = z | |
| if im == fzero: | |
| if re == finf: | |
| return mpc_zero | |
| if mpf_le(re, fone): | |
| return mpf_ellipk(re, prec, rnd), fzero | |
| wp = prec + 15 | |
| a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp) | |
| v = mpc_agm1(a, wp) | |
| r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd) | |
| return mpc_shift(r, -1) | |
| def mpf_ellipe(x, prec, rnd=round_fast): | |
| # http://functions.wolfram.com/EllipticIntegrals/ | |
| # EllipticK/20/01/0001/ | |
| # E = (1-m)*(K'(m)*2*m + K(m)) | |
| sign, man, exp, bc = x | |
| if not man: | |
| if x == fzero: | |
| return mpf_shift(mpf_pi(prec, rnd), -1) | |
| if x == fninf: | |
| return finf | |
| if x == fnan: | |
| return x | |
| if x == finf: | |
| raise ComplexResult | |
| if x == fone: | |
| return fone | |
| wp = prec+20 | |
| mag = exp+bc | |
| if mag < -wp: | |
| return mpf_shift(mpf_pi(prec, rnd), -1) | |
| # Compute a finite difference for K' | |
| p = max(mag, 0) - wp | |
| h = mpf_shift(fone, p) | |
| K = mpf_ellipk(x, 2*wp) | |
| Kh = mpf_ellipk(mpf_sub(x, h), 2*wp) | |
| Kdiff = mpf_shift(mpf_sub(K, Kh), -p) | |
| t = mpf_sub(fone, x) | |
| b = mpf_mul(Kdiff, mpf_shift(x,1), wp) | |
| return mpf_mul(t, mpf_add(K, b), prec, rnd) | |
| def mpc_ellipe(z, prec, rnd=round_fast): | |
| re, im = z | |
| if im == fzero: | |
| if re == finf: | |
| return (fzero, finf) | |
| if mpf_le(re, fone): | |
| return mpf_ellipe(re, prec, rnd), fzero | |
| wp = prec + 15 | |
| mag = mpc_abs(z, 1) | |
| p = max(mag[2]+mag[3], 0) - wp | |
| h = mpf_shift(fone, p) | |
| K = mpc_ellipk(z, 2*wp) | |
| Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp) | |
| Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p) | |
| t = mpc_sub(mpc_one, z, wp) | |
| b = mpc_mul(Kdiff, mpc_shift(z,1), wp) | |
| return mpc_mul(t, mpc_add(K, b, wp), prec, rnd) | |