Spaces:
Sleeping
Sleeping
| """ | |
| Low-level functions for arbitrary-precision floating-point arithmetic. | |
| """ | |
| __docformat__ = 'plaintext' | |
| import math | |
| from bisect import bisect | |
| import sys | |
| # Importing random is slow | |
| #from random import getrandbits | |
| getrandbits = None | |
| from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, | |
| BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils) | |
| from .libintmath import (giant_steps, | |
| trailtable, bctable, lshift, rshift, bitcount, trailing, | |
| sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem, | |
| bin_to_radix) | |
| # We don't pickle tuples directly for the following reasons: | |
| # 1: pickle uses str() for ints, which is inefficient when they are large | |
| # 2: pickle doesn't work for gmpy mpzs | |
| # Both problems are solved by using hex() | |
| if BACKEND == 'sage': | |
| def to_pickable(x): | |
| sign, man, exp, bc = x | |
| return sign, hex(man), exp, bc | |
| else: | |
| def to_pickable(x): | |
| sign, man, exp, bc = x | |
| return sign, hex(man)[2:], exp, bc | |
| def from_pickable(x): | |
| sign, man, exp, bc = x | |
| return (sign, MPZ(man, 16), exp, bc) | |
| class ComplexResult(ValueError): | |
| pass | |
| try: | |
| intern | |
| except NameError: | |
| intern = lambda x: x | |
| # All supported rounding modes | |
| round_nearest = intern('n') | |
| round_floor = intern('f') | |
| round_ceiling = intern('c') | |
| round_up = intern('u') | |
| round_down = intern('d') | |
| round_fast = round_down | |
| def prec_to_dps(n): | |
| """Return number of accurate decimals that can be represented | |
| with a precision of n bits.""" | |
| return max(1, int(round(int(n)/3.3219280948873626)-1)) | |
| def dps_to_prec(n): | |
| """Return the number of bits required to represent n decimals | |
| accurately.""" | |
| return max(1, int(round((int(n)+1)*3.3219280948873626))) | |
| def repr_dps(n): | |
| """Return the number of decimal digits required to represent | |
| a number with n-bit precision so that it can be uniquely | |
| reconstructed from the representation.""" | |
| dps = prec_to_dps(n) | |
| if dps == 15: | |
| return 17 | |
| return dps + 3 | |
| #----------------------------------------------------------------------------# | |
| # Some commonly needed float values # | |
| #----------------------------------------------------------------------------# | |
| # Regular number format: | |
| # (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa | |
| fzero = (0, MPZ_ZERO, 0, 0) | |
| fnzero = (1, MPZ_ZERO, 0, 0) | |
| fone = (0, MPZ_ONE, 0, 1) | |
| fnone = (1, MPZ_ONE, 0, 1) | |
| ftwo = (0, MPZ_ONE, 1, 1) | |
| ften = (0, MPZ_FIVE, 1, 3) | |
| fhalf = (0, MPZ_ONE, -1, 1) | |
| # Arbitrary encoding for special numbers: zero mantissa, nonzero exponent | |
| fnan = (0, MPZ_ZERO, -123, -1) | |
| finf = (0, MPZ_ZERO, -456, -2) | |
| fninf = (1, MPZ_ZERO, -789, -3) | |
| # Was 1e1000; this is broken in Python 2.4 | |
| math_float_inf = 1e300 * 1e300 | |
| #----------------------------------------------------------------------------# | |
| # Rounding # | |
| #----------------------------------------------------------------------------# | |
| # This function can be used to round a mantissa generally. However, | |
| # we will try to do most rounding inline for efficiency. | |
| def round_int(x, n, rnd): | |
| if rnd == round_nearest: | |
| if x >= 0: | |
| t = x >> (n-1) | |
| if t & 1 and ((t & 2) or (x & h_mask[n<300][n])): | |
| return (t>>1)+1 | |
| else: | |
| return t>>1 | |
| else: | |
| return -round_int(-x, n, rnd) | |
| if rnd == round_floor: | |
| return x >> n | |
| if rnd == round_ceiling: | |
| return -((-x) >> n) | |
| if rnd == round_down: | |
| if x >= 0: | |
| return x >> n | |
| return -((-x) >> n) | |
| if rnd == round_up: | |
| if x >= 0: | |
| return -((-x) >> n) | |
| return x >> n | |
| # These masks are used to pick out segments of numbers to determine | |
| # which direction to round when rounding to nearest. | |
| class h_mask_big: | |
| def __getitem__(self, n): | |
| return (MPZ_ONE<<(n-1))-1 | |
| h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)] | |
| h_mask = [h_mask_big(), h_mask_small] | |
| # The >> operator rounds to floor. shifts_down[rnd][sign] | |
| # tells whether this is the right direction to use, or if the | |
| # number should be negated before shifting | |
| shifts_down = {round_floor:(1,0), round_ceiling:(0,1), | |
| round_down:(1,1), round_up:(0,0)} | |
| #----------------------------------------------------------------------------# | |
| # Normalization of raw mpfs # | |
| #----------------------------------------------------------------------------# | |
| # This function is called almost every time an mpf is created. | |
| # It has been optimized accordingly. | |
| def _normalize(sign, man, exp, bc, prec, rnd): | |
| """ | |
| Create a raw mpf tuple with value (-1)**sign * man * 2**exp and | |
| normalized mantissa. The mantissa is rounded in the specified | |
| direction if its size exceeds the precision. Trailing zero bits | |
| are also stripped from the mantissa to ensure that the | |
| representation is canonical. | |
| Conditions on the input: | |
| * The input must represent a regular (finite) number | |
| * The sign bit must be 0 or 1 | |
| * The mantissa must be positive | |
| * The exponent must be an integer | |
| * The bitcount must be exact | |
| If these conditions are not met, use from_man_exp, mpf_pos, or any | |
| of the conversion functions to create normalized raw mpf tuples. | |
| """ | |
| if not man: | |
| return fzero | |
| # Cut mantissa down to size if larger than target precision | |
| n = bc - prec | |
| if n > 0: | |
| if rnd == round_nearest: | |
| t = man >> (n-1) | |
| if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): | |
| man = (t>>1)+1 | |
| else: | |
| man = t>>1 | |
| elif shifts_down[rnd][sign]: | |
| man >>= n | |
| else: | |
| man = -((-man)>>n) | |
| exp += n | |
| bc = prec | |
| # Strip trailing bits | |
| if not man & 1: | |
| t = trailtable[int(man & 255)] | |
| if not t: | |
| while not man & 255: | |
| man >>= 8 | |
| exp += 8 | |
| bc -= 8 | |
| t = trailtable[int(man & 255)] | |
| man >>= t | |
| exp += t | |
| bc -= t | |
| # Bit count can be wrong if the input mantissa was 1 less than | |
| # a power of 2 and got rounded up, thereby adding an extra bit. | |
| # With trailing bits removed, all powers of two have mantissa 1, | |
| # so this is easy to check for. | |
| if man == 1: | |
| bc = 1 | |
| return sign, man, exp, bc | |
| def _normalize1(sign, man, exp, bc, prec, rnd): | |
| """same as normalize, but with the added condition that | |
| man is odd or zero | |
| """ | |
| if not man: | |
| return fzero | |
| if bc <= prec: | |
| return sign, man, exp, bc | |
| n = bc - prec | |
| if rnd == round_nearest: | |
| t = man >> (n-1) | |
| if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): | |
| man = (t>>1)+1 | |
| else: | |
| man = t>>1 | |
| elif shifts_down[rnd][sign]: | |
| man >>= n | |
| else: | |
| man = -((-man)>>n) | |
| exp += n | |
| bc = prec | |
| # Strip trailing bits | |
| if not man & 1: | |
| t = trailtable[int(man & 255)] | |
| if not t: | |
| while not man & 255: | |
| man >>= 8 | |
| exp += 8 | |
| bc -= 8 | |
| t = trailtable[int(man & 255)] | |
| man >>= t | |
| exp += t | |
| bc -= t | |
| # Bit count can be wrong if the input mantissa was 1 less than | |
| # a power of 2 and got rounded up, thereby adding an extra bit. | |
| # With trailing bits removed, all powers of two have mantissa 1, | |
| # so this is easy to check for. | |
| if man == 1: | |
| bc = 1 | |
| return sign, man, exp, bc | |
| try: | |
| _exp_types = (int, long) | |
| except NameError: | |
| _exp_types = (int,) | |
| def strict_normalize(sign, man, exp, bc, prec, rnd): | |
| """Additional checks on the components of an mpf. Enable tests by setting | |
| the environment variable MPMATH_STRICT to Y.""" | |
| assert type(man) == MPZ_TYPE | |
| assert type(bc) in _exp_types | |
| assert type(exp) in _exp_types | |
| assert bc == bitcount(man) | |
| return _normalize(sign, man, exp, bc, prec, rnd) | |
| def strict_normalize1(sign, man, exp, bc, prec, rnd): | |
| """Additional checks on the components of an mpf. Enable tests by setting | |
| the environment variable MPMATH_STRICT to Y.""" | |
| assert type(man) == MPZ_TYPE | |
| assert type(bc) in _exp_types | |
| assert type(exp) in _exp_types | |
| assert bc == bitcount(man) | |
| assert (not man) or (man & 1) | |
| return _normalize1(sign, man, exp, bc, prec, rnd) | |
| if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy): | |
| _normalize = gmpy._mpmath_normalize | |
| _normalize1 = gmpy._mpmath_normalize | |
| if BACKEND == 'sage': | |
| _normalize = _normalize1 = sage_utils.normalize | |
| if STRICT: | |
| normalize = strict_normalize | |
| normalize1 = strict_normalize1 | |
| else: | |
| normalize = _normalize | |
| normalize1 = _normalize1 | |
| #----------------------------------------------------------------------------# | |
| # Conversion functions # | |
| #----------------------------------------------------------------------------# | |
| def from_man_exp(man, exp, prec=None, rnd=round_fast): | |
| """Create raw mpf from (man, exp) pair. The mantissa may be signed. | |
| If no precision is specified, the mantissa is stored exactly.""" | |
| man = MPZ(man) | |
| sign = 0 | |
| if man < 0: | |
| sign = 1 | |
| man = -man | |
| if man < 1024: | |
| bc = bctable[int(man)] | |
| else: | |
| bc = bitcount(man) | |
| if not prec: | |
| if not man: | |
| return fzero | |
| if not man & 1: | |
| if man & 2: | |
| return (sign, man >> 1, exp + 1, bc - 1) | |
| t = trailtable[int(man & 255)] | |
| if not t: | |
| while not man & 255: | |
| man >>= 8 | |
| exp += 8 | |
| bc -= 8 | |
| t = trailtable[int(man & 255)] | |
| man >>= t | |
| exp += t | |
| bc -= t | |
| return (sign, man, exp, bc) | |
| return normalize(sign, man, exp, bc, prec, rnd) | |
| int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257)) | |
| if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy): | |
| from_man_exp = gmpy._mpmath_create | |
| if BACKEND == 'sage': | |
| from_man_exp = sage_utils.from_man_exp | |
| def from_int(n, prec=0, rnd=round_fast): | |
| """Create a raw mpf from an integer. If no precision is specified, | |
| the mantissa is stored exactly.""" | |
| if not prec: | |
| if n in int_cache: | |
| return int_cache[n] | |
| return from_man_exp(n, 0, prec, rnd) | |
| def to_man_exp(s): | |
| """Return (man, exp) of a raw mpf. Raise an error if inf/nan.""" | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| raise ValueError("mantissa and exponent are undefined for %s" % man) | |
| return man, exp | |
| def to_int(s, rnd=None): | |
| """Convert a raw mpf to the nearest int. Rounding is done down by | |
| default (same as int(float) in Python), but can be changed. If the | |
| input is inf/nan, an exception is raised.""" | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| raise ValueError("cannot convert inf or nan to int") | |
| if exp >= 0: | |
| if sign: | |
| return (-man) << exp | |
| return man << exp | |
| # Make default rounding fast | |
| if not rnd: | |
| if sign: | |
| return -(man >> (-exp)) | |
| else: | |
| return man >> (-exp) | |
| if sign: | |
| return round_int(-man, -exp, rnd) | |
| else: | |
| return round_int(man, -exp, rnd) | |
| def mpf_round_int(s, rnd): | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| return s | |
| if exp >= 0: | |
| return s | |
| mag = exp+bc | |
| if mag < 1: | |
| if rnd == round_ceiling: | |
| if sign: return fzero | |
| else: return fone | |
| elif rnd == round_floor: | |
| if sign: return fnone | |
| else: return fzero | |
| elif rnd == round_nearest: | |
| if mag < 0 or man == MPZ_ONE: return fzero | |
| elif sign: return fnone | |
| else: return fone | |
| else: | |
| raise NotImplementedError | |
| return mpf_pos(s, min(bc, mag), rnd) | |
| def mpf_floor(s, prec=0, rnd=round_fast): | |
| v = mpf_round_int(s, round_floor) | |
| if prec: | |
| v = mpf_pos(v, prec, rnd) | |
| return v | |
| def mpf_ceil(s, prec=0, rnd=round_fast): | |
| v = mpf_round_int(s, round_ceiling) | |
| if prec: | |
| v = mpf_pos(v, prec, rnd) | |
| return v | |
| def mpf_nint(s, prec=0, rnd=round_fast): | |
| v = mpf_round_int(s, round_nearest) | |
| if prec: | |
| v = mpf_pos(v, prec, rnd) | |
| return v | |
| def mpf_frac(s, prec=0, rnd=round_fast): | |
| return mpf_sub(s, mpf_floor(s), prec, rnd) | |
| def from_float(x, prec=53, rnd=round_fast): | |
| """Create a raw mpf from a Python float, rounding if necessary. | |
| If prec >= 53, the result is guaranteed to represent exactly the | |
| same number as the input. If prec is not specified, use prec=53.""" | |
| # frexp only raises an exception for nan on some platforms | |
| if x != x: | |
| return fnan | |
| # in Python2.5 math.frexp gives an exception for float infinity | |
| # in Python2.6 it returns (float infinity, 0) | |
| try: | |
| m, e = math.frexp(x) | |
| except: | |
| if x == math_float_inf: return finf | |
| if x == -math_float_inf: return fninf | |
| return fnan | |
| if x == math_float_inf: return finf | |
| if x == -math_float_inf: return fninf | |
| return from_man_exp(int(m*(1<<53)), e-53, prec, rnd) | |
| def from_npfloat(x, prec=113, rnd=round_fast): | |
| """Create a raw mpf from a numpy float, rounding if necessary. | |
| If prec >= 113, the result is guaranteed to represent exactly the | |
| same number as the input. If prec is not specified, use prec=113.""" | |
| y = float(x) | |
| if x == y: # ldexp overflows for float16 | |
| return from_float(y, prec, rnd) | |
| import numpy as np | |
| if np.isfinite(x): | |
| m, e = np.frexp(x) | |
| return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd) | |
| if np.isposinf(x): return finf | |
| if np.isneginf(x): return fninf | |
| return fnan | |
| def from_Decimal(x, prec=None, rnd=round_fast): | |
| """Create a raw mpf from a Decimal, rounding if necessary. | |
| If prec is not specified, use the equivalent bit precision | |
| of the number of significant digits in x.""" | |
| if x.is_nan(): return fnan | |
| if x.is_infinite(): return fninf if x.is_signed() else finf | |
| if prec is None: | |
| prec = int(len(x.as_tuple()[1])*3.3219280948873626) | |
| return from_str(str(x), prec, rnd) | |
| def to_float(s, strict=False, rnd=round_fast): | |
| """ | |
| Convert a raw mpf to a Python float. The result is exact if the | |
| bitcount of s is <= 53 and no underflow/overflow occurs. | |
| If the number is too large or too small to represent as a regular | |
| float, it will be converted to inf or 0.0. Setting strict=True | |
| forces an OverflowError to be raised instead. | |
| Warning: with a directed rounding mode, the correct nearest representable | |
| floating-point number in the specified direction might not be computed | |
| in case of overflow or (gradual) underflow. | |
| """ | |
| sign, man, exp, bc = s | |
| if not man: | |
| if s == fzero: return 0.0 | |
| if s == finf: return math_float_inf | |
| if s == fninf: return -math_float_inf | |
| return math_float_inf/math_float_inf | |
| if bc > 53: | |
| sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd) | |
| if sign: | |
| man = -man | |
| try: | |
| return math.ldexp(man, exp) | |
| except OverflowError: | |
| if strict: | |
| raise | |
| # Overflow to infinity | |
| if exp + bc > 0: | |
| if sign: | |
| return -math_float_inf | |
| else: | |
| return math_float_inf | |
| # Underflow to zero | |
| return 0.0 | |
| def from_rational(p, q, prec, rnd=round_fast): | |
| """Create a raw mpf from a rational number p/q, round if | |
| necessary.""" | |
| return mpf_div(from_int(p), from_int(q), prec, rnd) | |
| def to_rational(s): | |
| """Convert a raw mpf to a rational number. Return integers (p, q) | |
| such that s = p/q exactly.""" | |
| sign, man, exp, bc = s | |
| if sign: | |
| man = -man | |
| if bc == -1: | |
| raise ValueError("cannot convert %s to a rational number" % man) | |
| if exp >= 0: | |
| return man * (1<<exp), 1 | |
| else: | |
| return man, 1<<(-exp) | |
| def to_fixed(s, prec): | |
| """Convert a raw mpf to a fixed-point big integer""" | |
| sign, man, exp, bc = s | |
| offset = exp + prec | |
| if sign: | |
| if offset >= 0: return (-man) << offset | |
| else: return (-man) >> (-offset) | |
| else: | |
| if offset >= 0: return man << offset | |
| else: return man >> (-offset) | |
| ############################################################################## | |
| ############################################################################## | |
| #----------------------------------------------------------------------------# | |
| # Arithmetic operations, etc. # | |
| #----------------------------------------------------------------------------# | |
| def mpf_rand(prec): | |
| """Return a raw mpf chosen randomly from [0, 1), with prec bits | |
| in the mantissa.""" | |
| global getrandbits | |
| if not getrandbits: | |
| import random | |
| getrandbits = random.getrandbits | |
| return from_man_exp(getrandbits(prec), -prec, prec, round_floor) | |
| def mpf_eq(s, t): | |
| """Test equality of two raw mpfs. This is simply tuple comparison | |
| unless either number is nan, in which case the result is False.""" | |
| if not s[1] or not t[1]: | |
| if s == fnan or t == fnan: | |
| return False | |
| return s == t | |
| def mpf_hash(s): | |
| # Duplicate the new hash algorithm introduces in Python 3.2. | |
| if sys.version_info >= (3, 2): | |
| ssign, sman, sexp, sbc = s | |
| # Handle special numbers | |
| if not sman: | |
| if s == fnan: return sys.hash_info.nan | |
| if s == finf: return sys.hash_info.inf | |
| if s == fninf: return -sys.hash_info.inf | |
| h = sman % HASH_MODULUS | |
| if sexp >= 0: | |
| sexp = sexp % HASH_BITS | |
| else: | |
| sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS) | |
| h = (h << sexp) % HASH_MODULUS | |
| if ssign: h = -h | |
| if h == -1: h = -2 | |
| return int(h) | |
| else: | |
| try: | |
| # Try to be compatible with hash values for floats and ints | |
| return hash(to_float(s, strict=1)) | |
| except OverflowError: | |
| # We must unfortunately sacrifice compatibility with ints here. | |
| # We could do hash(man << exp) when the exponent is positive, but | |
| # this would cause unreasonable inefficiency for large numbers. | |
| return hash(s) | |
| def mpf_cmp(s, t): | |
| """Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t, | |
| and 1 if s > t. (Same convention as Python's cmp() function.)""" | |
| # In principle, a comparison amounts to determining the sign of s-t. | |
| # A full subtraction is relatively slow, however, so we first try to | |
| # look at the components. | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| # Handle zeros and special numbers | |
| if not sman or not tman: | |
| if s == fzero: return -mpf_sign(t) | |
| if t == fzero: return mpf_sign(s) | |
| if s == t: return 0 | |
| # Follow same convention as Python's cmp for float nan | |
| if t == fnan: return 1 | |
| if s == finf: return 1 | |
| if t == fninf: return 1 | |
| return -1 | |
| # Different sides of zero | |
| if ssign != tsign: | |
| if not ssign: return 1 | |
| return -1 | |
| # This reduces to direct integer comparison | |
| if sexp == texp: | |
| if sman == tman: | |
| return 0 | |
| if sman > tman: | |
| if ssign: return -1 | |
| else: return 1 | |
| else: | |
| if ssign: return 1 | |
| else: return -1 | |
| # Check position of the highest set bit in each number. If | |
| # different, there is certainly an inequality. | |
| a = sbc + sexp | |
| b = tbc + texp | |
| if ssign: | |
| if a < b: return 1 | |
| if a > b: return -1 | |
| else: | |
| if a < b: return -1 | |
| if a > b: return 1 | |
| # Both numbers have the same highest bit. Subtract to find | |
| # how the lower bits compare. | |
| delta = mpf_sub(s, t, 5, round_floor) | |
| if delta[0]: | |
| return -1 | |
| return 1 | |
| def mpf_lt(s, t): | |
| if s == fnan or t == fnan: | |
| return False | |
| return mpf_cmp(s, t) < 0 | |
| def mpf_le(s, t): | |
| if s == fnan or t == fnan: | |
| return False | |
| return mpf_cmp(s, t) <= 0 | |
| def mpf_gt(s, t): | |
| if s == fnan or t == fnan: | |
| return False | |
| return mpf_cmp(s, t) > 0 | |
| def mpf_ge(s, t): | |
| if s == fnan or t == fnan: | |
| return False | |
| return mpf_cmp(s, t) >= 0 | |
| def mpf_min_max(seq): | |
| min = max = seq[0] | |
| for x in seq[1:]: | |
| if mpf_lt(x, min): min = x | |
| if mpf_gt(x, max): max = x | |
| return min, max | |
| def mpf_pos(s, prec=0, rnd=round_fast): | |
| """Calculate 0+s for a raw mpf (i.e., just round s to the specified | |
| precision).""" | |
| if prec: | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| return s | |
| return normalize1(sign, man, exp, bc, prec, rnd) | |
| return s | |
| def mpf_neg(s, prec=None, rnd=round_fast): | |
| """Negate a raw mpf (return -s), rounding the result to the | |
| specified precision. The prec argument can be omitted to do the | |
| operation exactly.""" | |
| sign, man, exp, bc = s | |
| if not man: | |
| if exp: | |
| if s == finf: return fninf | |
| if s == fninf: return finf | |
| return s | |
| if not prec: | |
| return (1-sign, man, exp, bc) | |
| return normalize1(1-sign, man, exp, bc, prec, rnd) | |
| def mpf_abs(s, prec=None, rnd=round_fast): | |
| """Return abs(s) of the raw mpf s, rounded to the specified | |
| precision. The prec argument can be omitted to generate an | |
| exact result.""" | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| if s == fninf: | |
| return finf | |
| return s | |
| if not prec: | |
| if sign: | |
| return (0, man, exp, bc) | |
| return s | |
| return normalize1(0, man, exp, bc, prec, rnd) | |
| def mpf_sign(s): | |
| """Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on | |
| whether s is negative, zero, or positive. (Nan is taken to give 0.)""" | |
| sign, man, exp, bc = s | |
| if not man: | |
| if s == finf: return 1 | |
| if s == fninf: return -1 | |
| return 0 | |
| return (-1) ** sign | |
| def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0): | |
| """ | |
| Add the two raw mpf values s and t. | |
| With prec=0, no rounding is performed. Note that this can | |
| produce a very large mantissa (potentially too large to fit | |
| in memory) if exponents are far apart. | |
| """ | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| tsign ^= _sub | |
| # Standard case: two nonzero, regular numbers | |
| if sman and tman: | |
| offset = sexp - texp | |
| if offset: | |
| if offset > 0: | |
| # Outside precision range; only need to perturb | |
| if offset > 100 and prec: | |
| delta = sbc + sexp - tbc - texp | |
| if delta > prec + 4: | |
| offset = prec + 4 | |
| sman <<= offset | |
| if tsign == ssign: sman += 1 | |
| else: sman -= 1 | |
| return normalize1(ssign, sman, sexp-offset, | |
| bitcount(sman), prec, rnd) | |
| # Add | |
| if ssign == tsign: | |
| man = tman + (sman << offset) | |
| # Subtract | |
| else: | |
| if ssign: man = tman - (sman << offset) | |
| else: man = (sman << offset) - tman | |
| if man >= 0: | |
| ssign = 0 | |
| else: | |
| man = -man | |
| ssign = 1 | |
| bc = bitcount(man) | |
| return normalize1(ssign, man, texp, bc, prec or bc, rnd) | |
| elif offset < 0: | |
| # Outside precision range; only need to perturb | |
| if offset < -100 and prec: | |
| delta = tbc + texp - sbc - sexp | |
| if delta > prec + 4: | |
| offset = prec + 4 | |
| tman <<= offset | |
| if ssign == tsign: tman += 1 | |
| else: tman -= 1 | |
| return normalize1(tsign, tman, texp-offset, | |
| bitcount(tman), prec, rnd) | |
| # Add | |
| if ssign == tsign: | |
| man = sman + (tman << -offset) | |
| # Subtract | |
| else: | |
| if tsign: man = sman - (tman << -offset) | |
| else: man = (tman << -offset) - sman | |
| if man >= 0: | |
| ssign = 0 | |
| else: | |
| man = -man | |
| ssign = 1 | |
| bc = bitcount(man) | |
| return normalize1(ssign, man, sexp, bc, prec or bc, rnd) | |
| # Equal exponents; no shifting necessary | |
| if ssign == tsign: | |
| man = tman + sman | |
| else: | |
| if ssign: man = tman - sman | |
| else: man = sman - tman | |
| if man >= 0: | |
| ssign = 0 | |
| else: | |
| man = -man | |
| ssign = 1 | |
| bc = bitcount(man) | |
| return normalize(ssign, man, texp, bc, prec or bc, rnd) | |
| # Handle zeros and special numbers | |
| if _sub: | |
| t = mpf_neg(t) | |
| if not sman: | |
| if sexp: | |
| if s == t or tman or not texp: | |
| return s | |
| return fnan | |
| if tman: | |
| return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd) | |
| return t | |
| if texp: | |
| return t | |
| if sman: | |
| return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd) | |
| return s | |
| def mpf_sub(s, t, prec=0, rnd=round_fast): | |
| """Return the difference of two raw mpfs, s-t. This function is | |
| simply a wrapper of mpf_add that changes the sign of t.""" | |
| return mpf_add(s, t, prec, rnd, 1) | |
| def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False): | |
| """ | |
| Sum a list of mpf values efficiently and accurately | |
| (typically no temporary roundoff occurs). If prec=0, | |
| the final result will not be rounded either. | |
| There may be roundoff error or cancellation if extremely | |
| large exponent differences occur. | |
| With absolute=True, sums the absolute values. | |
| """ | |
| man = 0 | |
| exp = 0 | |
| max_extra_prec = prec*2 or 1000000 # XXX | |
| special = None | |
| for x in xs: | |
| xsign, xman, xexp, xbc = x | |
| if xman: | |
| if xsign and not absolute: | |
| xman = -xman | |
| delta = xexp - exp | |
| if xexp >= exp: | |
| # x much larger than existing sum? | |
| # first: quick test | |
| if (delta > max_extra_prec) and \ | |
| ((not man) or delta-bitcount(abs(man)) > max_extra_prec): | |
| man = xman | |
| exp = xexp | |
| else: | |
| man += (xman << delta) | |
| else: | |
| delta = -delta | |
| # x much smaller than existing sum? | |
| if delta-xbc > max_extra_prec: | |
| if not man: | |
| man, exp = xman, xexp | |
| else: | |
| man = (man << delta) + xman | |
| exp = xexp | |
| elif xexp: | |
| if absolute: | |
| x = mpf_abs(x) | |
| special = mpf_add(special or fzero, x, 1) | |
| # Will be inf or nan | |
| if special: | |
| return special | |
| return from_man_exp(man, exp, prec, rnd) | |
| def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast): | |
| """Multiply two raw mpfs""" | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| sign = ssign ^ tsign | |
| man = sman*tman | |
| if man: | |
| bc = bitcount(man) | |
| if prec: | |
| return normalize1(sign, man, sexp+texp, bc, prec, rnd) | |
| else: | |
| return (sign, man, sexp+texp, bc) | |
| s_special = (not sman) and sexp | |
| t_special = (not tman) and texp | |
| if not s_special and not t_special: | |
| return fzero | |
| if fnan in (s, t): return fnan | |
| if (not tman) and texp: s, t = t, s | |
| if t == fzero: return fnan | |
| return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] | |
| def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast): | |
| """Multiply by a Python integer.""" | |
| sign, man, exp, bc = s | |
| if not man: | |
| return mpf_mul(s, from_int(n), prec, rnd) | |
| if not n: | |
| return fzero | |
| if n < 0: | |
| sign ^= 1 | |
| n = -n | |
| man *= n | |
| return normalize(sign, man, exp, bitcount(man), prec, rnd) | |
| def python_mpf_mul(s, t, prec=0, rnd=round_fast): | |
| """Multiply two raw mpfs""" | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| sign = ssign ^ tsign | |
| man = sman*tman | |
| if man: | |
| bc = sbc + tbc - 1 | |
| bc += int(man>>bc) | |
| if prec: | |
| return normalize1(sign, man, sexp+texp, bc, prec, rnd) | |
| else: | |
| return (sign, man, sexp+texp, bc) | |
| s_special = (not sman) and sexp | |
| t_special = (not tman) and texp | |
| if not s_special and not t_special: | |
| return fzero | |
| if fnan in (s, t): return fnan | |
| if (not tman) and texp: s, t = t, s | |
| if t == fzero: return fnan | |
| return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] | |
| def python_mpf_mul_int(s, n, prec, rnd=round_fast): | |
| """Multiply by a Python integer.""" | |
| sign, man, exp, bc = s | |
| if not man: | |
| return mpf_mul(s, from_int(n), prec, rnd) | |
| if not n: | |
| return fzero | |
| if n < 0: | |
| sign ^= 1 | |
| n = -n | |
| man *= n | |
| # Generally n will be small | |
| if n < 1024: | |
| bc += bctable[int(n)] - 1 | |
| else: | |
| bc += bitcount(n) - 1 | |
| bc += int(man>>bc) | |
| return normalize(sign, man, exp, bc, prec, rnd) | |
| if BACKEND == 'gmpy': | |
| mpf_mul = gmpy_mpf_mul | |
| mpf_mul_int = gmpy_mpf_mul_int | |
| else: | |
| mpf_mul = python_mpf_mul | |
| mpf_mul_int = python_mpf_mul_int | |
| def mpf_shift(s, n): | |
| """Quickly multiply the raw mpf s by 2**n without rounding.""" | |
| sign, man, exp, bc = s | |
| if not man: | |
| return s | |
| return sign, man, exp+n, bc | |
| def mpf_frexp(x): | |
| """Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero""" | |
| sign, man, exp, bc = x | |
| if not man: | |
| if x == fzero: | |
| return (fzero, 0) | |
| else: | |
| raise ValueError | |
| return mpf_shift(x, -bc-exp), bc+exp | |
| def mpf_div(s, t, prec, rnd=round_fast): | |
| """Floating-point division""" | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| if not sman or not tman: | |
| if s == fzero: | |
| if t == fzero: raise ZeroDivisionError | |
| if t == fnan: return fnan | |
| return fzero | |
| if t == fzero: | |
| raise ZeroDivisionError | |
| s_special = (not sman) and sexp | |
| t_special = (not tman) and texp | |
| if s_special and t_special: | |
| return fnan | |
| if s == fnan or t == fnan: | |
| return fnan | |
| if not t_special: | |
| if t == fzero: | |
| return fnan | |
| return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] | |
| return fzero | |
| sign = ssign ^ tsign | |
| if tman == 1: | |
| return normalize1(sign, sman, sexp-texp, sbc, prec, rnd) | |
| # Same strategy as for addition: if there is a remainder, perturb | |
| # the result a few bits outside the precision range before rounding | |
| extra = prec - sbc + tbc + 5 | |
| if extra < 5: | |
| extra = 5 | |
| quot, rem = divmod(sman<<extra, tman) | |
| if rem: | |
| quot = (quot<<1) + 1 | |
| extra += 1 | |
| return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) | |
| return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) | |
| def mpf_rdiv_int(n, t, prec, rnd=round_fast): | |
| """Floating-point division n/t with a Python integer as numerator""" | |
| sign, man, exp, bc = t | |
| if not n or not man: | |
| return mpf_div(from_int(n), t, prec, rnd) | |
| if n < 0: | |
| sign ^= 1 | |
| n = -n | |
| extra = prec + bc + 5 | |
| quot, rem = divmod(n<<extra, man) | |
| if rem: | |
| quot = (quot<<1) + 1 | |
| extra += 1 | |
| return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd) | |
| return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd) | |
| def mpf_mod(s, t, prec, rnd=round_fast): | |
| ssign, sman, sexp, sbc = s | |
| tsign, tman, texp, tbc = t | |
| if ((not sman) and sexp) or ((not tman) and texp): | |
| return fnan | |
| # Important special case: do nothing if t is larger | |
| if ssign == tsign and texp > sexp+sbc: | |
| return s | |
| # Another important special case: this allows us to do e.g. x % 1.0 | |
| # to find the fractional part of x, and it will work when x is huge. | |
| if tman == 1 and sexp > texp+tbc: | |
| return fzero | |
| base = min(sexp, texp) | |
| sman = (-1)**ssign * sman | |
| tman = (-1)**tsign * tman | |
| man = (sman << (sexp-base)) % (tman << (texp-base)) | |
| if man >= 0: | |
| sign = 0 | |
| else: | |
| man = -man | |
| sign = 1 | |
| return normalize(sign, man, base, bitcount(man), prec, rnd) | |
| reciprocal_rnd = { | |
| round_down : round_up, | |
| round_up : round_down, | |
| round_floor : round_ceiling, | |
| round_ceiling : round_floor, | |
| round_nearest : round_nearest | |
| } | |
| negative_rnd = { | |
| round_down : round_down, | |
| round_up : round_up, | |
| round_floor : round_ceiling, | |
| round_ceiling : round_floor, | |
| round_nearest : round_nearest | |
| } | |
| def mpf_pow_int(s, n, prec, rnd=round_fast): | |
| """Compute s**n, where s is a raw mpf and n is a Python integer.""" | |
| sign, man, exp, bc = s | |
| if (not man) and exp: | |
| if s == finf: | |
| if n > 0: return s | |
| if n == 0: return fnan | |
| return fzero | |
| if s == fninf: | |
| if n > 0: return [finf, fninf][n & 1] | |
| if n == 0: return fnan | |
| return fzero | |
| return fnan | |
| n = int(n) | |
| if n == 0: return fone | |
| if n == 1: return mpf_pos(s, prec, rnd) | |
| if n == 2: | |
| _, man, exp, bc = s | |
| if not man: | |
| return fzero | |
| man = man*man | |
| if man == 1: | |
| return (0, MPZ_ONE, exp+exp, 1) | |
| bc = bc + bc - 2 | |
| bc += bctable[int(man>>bc)] | |
| return normalize1(0, man, exp+exp, bc, prec, rnd) | |
| if n == -1: return mpf_div(fone, s, prec, rnd) | |
| if n < 0: | |
| inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd]) | |
| return mpf_div(fone, inverse, prec, rnd) | |
| result_sign = sign & n | |
| # Use exact integer power when the exact mantissa is small | |
| if man == 1: | |
| return (result_sign, MPZ_ONE, exp*n, 1) | |
| if bc*n < 1000: | |
| man **= n | |
| return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd) | |
| # Use directed rounding all the way through to maintain rigorous | |
| # bounds for interval arithmetic | |
| rounds_down = (rnd == round_nearest) or \ | |
| shifts_down[rnd][result_sign] | |
| # Now we perform binary exponentiation. Need to estimate precision | |
| # to avoid rounding errors from temporary operations. Roughly log_2(n) | |
| # operations are performed. | |
| workprec = prec + 4*bitcount(n) + 4 | |
| _, pm, pe, pbc = fone | |
| while 1: | |
| if n & 1: | |
| pm = pm*man | |
| pe = pe+exp | |
| pbc += bc - 2 | |
| pbc = pbc + bctable[int(pm >> pbc)] | |
| if pbc > workprec: | |
| if rounds_down: | |
| pm = pm >> (pbc-workprec) | |
| else: | |
| pm = -((-pm) >> (pbc-workprec)) | |
| pe += pbc - workprec | |
| pbc = workprec | |
| n -= 1 | |
| if not n: | |
| break | |
| man = man*man | |
| exp = exp+exp | |
| bc = bc + bc - 2 | |
| bc = bc + bctable[int(man >> bc)] | |
| if bc > workprec: | |
| if rounds_down: | |
| man = man >> (bc-workprec) | |
| else: | |
| man = -((-man) >> (bc-workprec)) | |
| exp += bc - workprec | |
| bc = workprec | |
| n = n // 2 | |
| return normalize(result_sign, pm, pe, pbc, prec, rnd) | |
| def mpf_perturb(x, eps_sign, prec, rnd): | |
| """ | |
| For nonzero x, calculate x + eps with directed rounding, where | |
| eps < prec relatively and eps has the given sign (0 for | |
| positive, 1 for negative). | |
| With rounding to nearest, this is taken to simply normalize | |
| x to the given precision. | |
| """ | |
| if rnd == round_nearest: | |
| return mpf_pos(x, prec, rnd) | |
| sign, man, exp, bc = x | |
| eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1) | |
| if sign: | |
| away = (rnd in (round_down, round_ceiling)) ^ eps_sign | |
| else: | |
| away = (rnd in (round_up, round_ceiling)) ^ eps_sign | |
| if away: | |
| return mpf_add(x, eps, prec, rnd) | |
| else: | |
| return mpf_pos(x, prec, rnd) | |
| #----------------------------------------------------------------------------# | |
| # Radix conversion # | |
| #----------------------------------------------------------------------------# | |
| def to_digits_exp(s, dps): | |
| """Helper function for representing the floating-point number s as | |
| a decimal with dps digits. Returns (sign, string, exponent) where | |
| sign is '' or '-', string is the digit string, and exponent is | |
| the decimal exponent as an int. | |
| If inexact, the decimal representation is rounded toward zero.""" | |
| # Extract sign first so it doesn't mess up the string digit count | |
| if s[0]: | |
| sign = '-' | |
| s = mpf_neg(s) | |
| else: | |
| sign = '' | |
| _sign, man, exp, bc = s | |
| if not man: | |
| return '', '0', 0 | |
| bitprec = int(dps * math.log(10,2)) + 10 | |
| # Cut down to size | |
| # TODO: account for precision when doing this | |
| exp_from_1 = exp + bc | |
| if abs(exp_from_1) > 3500: | |
| from .libelefun import mpf_ln2, mpf_ln10 | |
| # Set b = int(exp * log(2)/log(10)) | |
| # If exp is huge, we must use high-precision arithmetic to | |
| # find the nearest power of ten | |
| expprec = bitcount(abs(exp)) + 5 | |
| tmp = from_int(exp) | |
| tmp = mpf_mul(tmp, mpf_ln2(expprec)) | |
| tmp = mpf_div(tmp, mpf_ln10(expprec), expprec) | |
| b = to_int(tmp) | |
| s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec) | |
| _sign, man, exp, bc = s | |
| exponent = b | |
| else: | |
| exponent = 0 | |
| # First, calculate mantissa digits by converting to a binary | |
| # fixed-point number and then converting that number to | |
| # a decimal fixed-point number. | |
| fixprec = max(bitprec - exp - bc, 0) | |
| fixdps = int(fixprec / math.log(10,2) + 0.5) | |
| sf = to_fixed(s, fixprec) | |
| sd = bin_to_radix(sf, fixprec, 10, fixdps) | |
| digits = numeral(sd, base=10, size=dps) | |
| exponent += len(digits) - fixdps - 1 | |
| return sign, digits, exponent | |
| def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None, | |
| show_zero_exponent=False): | |
| """ | |
| Convert a raw mpf to a decimal floating-point literal with at | |
| most `dps` decimal digits in the mantissa (not counting extra zeros | |
| that may be inserted for visual purposes). | |
| The number will be printed in fixed-point format if the position | |
| of the leading digit is strictly between min_fixed | |
| (default = min(-dps/3,-5)) and max_fixed (default = dps). | |
| To force fixed-point format always, set min_fixed = -inf, | |
| max_fixed = +inf. To force floating-point format, set | |
| min_fixed >= max_fixed. | |
| The literal is formatted so that it can be parsed back to a number | |
| by to_str, float() or Decimal(). | |
| """ | |
| # Special numbers | |
| if not s[1]: | |
| if s == fzero: | |
| if dps: t = '0.0' | |
| else: t = '.0' | |
| if show_zero_exponent: | |
| t += 'e+0' | |
| return t | |
| if s == finf: return '+inf' | |
| if s == fninf: return '-inf' | |
| if s == fnan: return 'nan' | |
| raise ValueError | |
| if min_fixed is None: min_fixed = min(-(dps//3), -5) | |
| if max_fixed is None: max_fixed = dps | |
| # to_digits_exp rounds to floor. | |
| # This sometimes kills some instances of "...00001" | |
| sign, digits, exponent = to_digits_exp(s, dps+3) | |
| # No digits: show only .0; round exponent to nearest | |
| if not dps: | |
| if digits[0] in '56789': | |
| exponent += 1 | |
| digits = ".0" | |
| else: | |
| # Rounding up kills some instances of "...99999" | |
| if len(digits) > dps and digits[dps] in '56789': | |
| digits = digits[:dps] | |
| i = dps - 1 | |
| while i >= 0 and digits[i] == '9': | |
| i -= 1 | |
| if i >= 0: | |
| digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1) | |
| else: | |
| digits = '1' + '0' * (dps - 1) | |
| exponent += 1 | |
| else: | |
| digits = digits[:dps] | |
| # Prettify numbers close to unit magnitude | |
| if min_fixed < exponent < max_fixed: | |
| if exponent < 0: | |
| digits = ("0"*int(-exponent)) + digits | |
| split = 1 | |
| else: | |
| split = exponent + 1 | |
| if split > dps: | |
| digits += "0"*(split-dps) | |
| exponent = 0 | |
| else: | |
| split = 1 | |
| digits = (digits[:split] + "." + digits[split:]) | |
| if strip_zeros: | |
| # Clean up trailing zeros | |
| digits = digits.rstrip('0') | |
| if digits[-1] == ".": | |
| digits += "0" | |
| if exponent == 0 and dps and not show_zero_exponent: return sign + digits | |
| if exponent >= 0: return sign + digits + "e+" + str(exponent) | |
| if exponent < 0: return sign + digits + "e" + str(exponent) | |
| def str_to_man_exp(x, base=10): | |
| """Helper function for from_str.""" | |
| x = x.lower().rstrip('l') | |
| # Verify that the input is a valid float literal | |
| float(x) | |
| # Split into mantissa, exponent | |
| parts = x.split('e') | |
| if len(parts) == 1: | |
| exp = 0 | |
| else: # == 2 | |
| x = parts[0] | |
| exp = int(parts[1]) | |
| # Look for radix point in mantissa | |
| parts = x.split('.') | |
| if len(parts) == 2: | |
| a, b = parts[0], parts[1].rstrip('0') | |
| exp -= len(b) | |
| x = a + b | |
| x = MPZ(int(x, base)) | |
| return x, exp | |
| special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan} | |
| def from_str(x, prec, rnd=round_fast): | |
| """Create a raw mpf from a decimal literal, rounding in the | |
| specified direction if the input number cannot be represented | |
| exactly as a binary floating-point number with the given number of | |
| bits. The literal syntax accepted is the same as for Python | |
| floats. | |
| TODO: the rounding does not work properly for large exponents. | |
| """ | |
| x = x.lower().strip() | |
| if x in special_str: | |
| return special_str[x] | |
| if '/' in x: | |
| p, q = x.split('/') | |
| p, q = p.rstrip('l'), q.rstrip('l') | |
| return from_rational(int(p), int(q), prec, rnd) | |
| man, exp = str_to_man_exp(x, base=10) | |
| # XXX: appropriate cutoffs & track direction | |
| # note no factors of 5 | |
| if abs(exp) > 400: | |
| s = from_int(man, prec+10) | |
| s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd) | |
| else: | |
| if exp >= 0: | |
| s = from_int(man * 10**exp, prec, rnd) | |
| else: | |
| s = from_rational(man, 10**-exp, prec, rnd) | |
| return s | |
| # Binary string conversion. These are currently mainly used for debugging | |
| # and could use some improvement in the future | |
| def from_bstr(x): | |
| man, exp = str_to_man_exp(x, base=2) | |
| man = MPZ(man) | |
| sign = 0 | |
| if man < 0: | |
| man = -man | |
| sign = 1 | |
| bc = bitcount(man) | |
| return normalize(sign, man, exp, bc, bc, round_floor) | |
| def to_bstr(x): | |
| sign, man, exp, bc = x | |
| return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp) | |
| #----------------------------------------------------------------------------# | |
| # Square roots # | |
| #----------------------------------------------------------------------------# | |
| def mpf_sqrt(s, prec, rnd=round_fast): | |
| """ | |
| Compute the square root of a nonnegative mpf value. The | |
| result is correctly rounded. | |
| """ | |
| sign, man, exp, bc = s | |
| if sign: | |
| raise ComplexResult("square root of a negative number") | |
| if not man: | |
| return s | |
| if exp & 1: | |
| exp -= 1 | |
| man <<= 1 | |
| bc += 1 | |
| elif man == 1: | |
| return normalize1(sign, man, exp//2, bc, prec, rnd) | |
| shift = max(4, 2*prec-bc+4) | |
| shift += shift & 1 | |
| if rnd in 'fd': | |
| man = isqrt(man<<shift) | |
| else: | |
| man, rem = sqrtrem(man<<shift) | |
| # Perturb up | |
| if rem: | |
| man = (man<<1)+1 | |
| shift += 2 | |
| return from_man_exp(man, (exp-shift)//2, prec, rnd) | |
| def mpf_hypot(x, y, prec, rnd=round_fast): | |
| """Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs | |
| x and y.""" | |
| if y == fzero: return mpf_abs(x, prec, rnd) | |
| if x == fzero: return mpf_abs(y, prec, rnd) | |
| hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4) | |
| return mpf_sqrt(hypot2, prec, rnd) | |
| if BACKEND == 'sage': | |
| try: | |
| import sage.libs.mpmath.ext_libmp as ext_lib | |
| mpf_add = ext_lib.mpf_add | |
| mpf_sub = ext_lib.mpf_sub | |
| mpf_mul = ext_lib.mpf_mul | |
| mpf_div = ext_lib.mpf_div | |
| mpf_sqrt = ext_lib.mpf_sqrt | |
| except ImportError: | |
| pass | |