Spaces:
Sleeping
Sleeping
| """ | |
| ============= | |
| Masked Arrays | |
| ============= | |
| Arrays sometimes contain invalid or missing data. When doing operations | |
| on such arrays, we wish to suppress invalid values, which is the purpose masked | |
| arrays fulfill (an example of typical use is given below). | |
| For example, examine the following array: | |
| x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan]) | |
| When we try to calculate the mean of the data, the result is undetermined: | |
| np.mean(x) | |
| nan | |
| The mean is calculated using roughly ``np.sum(x)/len(x)``, but since | |
| any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter | |
| masked arrays: | |
| m = np.ma.masked_array(x, np.isnan(x)) | |
| m | |
| masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --], | |
| mask = [False False False True False False False True], | |
| fill_value=1e+20) | |
| Here, we construct a masked array that suppress all ``NaN`` values. We | |
| may now proceed to calculate the mean of the other values: | |
| np.mean(m) | |
| 2.6666666666666665 | |
| .. [1] Not-a-Number, a floating point value that is the result of an | |
| invalid operation. | |
| .. moduleauthor:: Pierre Gerard-Marchant | |
| .. moduleauthor:: Jarrod Millman | |
| """ | |
| from . import core | |
| from .core import * | |
| from . import extras | |
| from .extras import * | |
| __all__ = ['core', 'extras'] | |
| __all__ += core.__all__ | |
| __all__ += extras.__all__ | |
| from numpy._pytesttester import PytestTester | |
| test = PytestTester(__name__) | |
| del PytestTester | |