Spaces:
Sleeping
Sleeping
| import sys | |
| from numpy.testing import ( | |
| assert_, assert_array_equal, assert_raises, | |
| ) | |
| from numpy import random | |
| import numpy as np | |
| class TestRegression: | |
| def test_VonMises_range(self): | |
| # Make sure generated random variables are in [-pi, pi]. | |
| # Regression test for ticket #986. | |
| for mu in np.linspace(-7., 7., 5): | |
| r = random.mtrand.vonmises(mu, 1, 50) | |
| assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) | |
| def test_hypergeometric_range(self): | |
| # Test for ticket #921 | |
| assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4)) | |
| assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0)) | |
| # Test for ticket #5623 | |
| args = [ | |
| (2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems | |
| ] | |
| is_64bits = sys.maxsize > 2**32 | |
| if is_64bits and sys.platform != 'win32': | |
| # Check for 64-bit systems | |
| args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) | |
| for arg in args: | |
| assert_(np.random.hypergeometric(*arg) > 0) | |
| def test_logseries_convergence(self): | |
| # Test for ticket #923 | |
| N = 1000 | |
| np.random.seed(0) | |
| rvsn = np.random.logseries(0.8, size=N) | |
| # these two frequency counts should be close to theoretical | |
| # numbers with this large sample | |
| # theoretical large N result is 0.49706795 | |
| freq = np.sum(rvsn == 1) / float(N) | |
| msg = f'Frequency was {freq:f}, should be > 0.45' | |
| assert_(freq > 0.45, msg) | |
| # theoretical large N result is 0.19882718 | |
| freq = np.sum(rvsn == 2) / float(N) | |
| msg = f'Frequency was {freq:f}, should be < 0.23' | |
| assert_(freq < 0.23, msg) | |
| def test_shuffle_mixed_dimension(self): | |
| # Test for trac ticket #2074 | |
| for t in [[1, 2, 3, None], | |
| [(1, 1), (2, 2), (3, 3), None], | |
| [1, (2, 2), (3, 3), None], | |
| [(1, 1), 2, 3, None]]: | |
| np.random.seed(12345) | |
| shuffled = list(t) | |
| random.shuffle(shuffled) | |
| expected = np.array([t[0], t[3], t[1], t[2]], dtype=object) | |
| assert_array_equal(np.array(shuffled, dtype=object), expected) | |
| def test_call_within_randomstate(self): | |
| # Check that custom RandomState does not call into global state | |
| m = np.random.RandomState() | |
| res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) | |
| for i in range(3): | |
| np.random.seed(i) | |
| m.seed(4321) | |
| # If m.state is not honored, the result will change | |
| assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) | |
| def test_multivariate_normal_size_types(self): | |
| # Test for multivariate_normal issue with 'size' argument. | |
| # Check that the multivariate_normal size argument can be a | |
| # numpy integer. | |
| np.random.multivariate_normal([0], [[0]], size=1) | |
| np.random.multivariate_normal([0], [[0]], size=np.int_(1)) | |
| np.random.multivariate_normal([0], [[0]], size=np.int64(1)) | |
| def test_beta_small_parameters(self): | |
| # Test that beta with small a and b parameters does not produce | |
| # NaNs due to roundoff errors causing 0 / 0, gh-5851 | |
| np.random.seed(1234567890) | |
| x = np.random.beta(0.0001, 0.0001, size=100) | |
| assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta') | |
| def test_choice_sum_of_probs_tolerance(self): | |
| # The sum of probs should be 1.0 with some tolerance. | |
| # For low precision dtypes the tolerance was too tight. | |
| # See numpy github issue 6123. | |
| np.random.seed(1234) | |
| a = [1, 2, 3] | |
| counts = [4, 4, 2] | |
| for dt in np.float16, np.float32, np.float64: | |
| probs = np.array(counts, dtype=dt) / sum(counts) | |
| c = np.random.choice(a, p=probs) | |
| assert_(c in a) | |
| assert_raises(ValueError, np.random.choice, a, p=probs*0.9) | |
| def test_shuffle_of_array_of_different_length_strings(self): | |
| # Test that permuting an array of different length strings | |
| # will not cause a segfault on garbage collection | |
| # Tests gh-7710 | |
| np.random.seed(1234) | |
| a = np.array(['a', 'a' * 1000]) | |
| for _ in range(100): | |
| np.random.shuffle(a) | |
| # Force Garbage Collection - should not segfault. | |
| import gc | |
| gc.collect() | |
| def test_shuffle_of_array_of_objects(self): | |
| # Test that permuting an array of objects will not cause | |
| # a segfault on garbage collection. | |
| # See gh-7719 | |
| np.random.seed(1234) | |
| a = np.array([np.arange(1), np.arange(4)], dtype=object) | |
| for _ in range(1000): | |
| np.random.shuffle(a) | |
| # Force Garbage Collection - should not segfault. | |
| import gc | |
| gc.collect() | |
| def test_permutation_subclass(self): | |
| class N(np.ndarray): | |
| pass | |
| np.random.seed(1) | |
| orig = np.arange(3).view(N) | |
| perm = np.random.permutation(orig) | |
| assert_array_equal(perm, np.array([0, 2, 1])) | |
| assert_array_equal(orig, np.arange(3).view(N)) | |
| class M: | |
| a = np.arange(5) | |
| def __array__(self): | |
| return self.a | |
| np.random.seed(1) | |
| m = M() | |
| perm = np.random.permutation(m) | |
| assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) | |
| assert_array_equal(m.__array__(), np.arange(5)) | |