import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import gradio as gr model_id = "linjc16/Panacea-7B-Chat" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) streamer = TextStreamer(tokenizer) # Chat function def chat(message, history=[]): prompt = message input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) with torch.no_grad(): output = model.generate( input_ids, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.9 ) reply = tokenizer.decode(output[0], skip_special_tokens=True) return reply # Gradio Interface iface = gr.Interface( fn=chat, inputs=gr.Textbox(lines=2, placeholder="Type your message here..."), outputs="text", title="Panacea-7B-Chat" ) iface.launch()