pratikshahp commited on
Commit
5ea9762
·
verified ·
1 Parent(s): 780a75d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -25
app.py CHANGED
@@ -2,53 +2,42 @@ import os
2
  from dotenv import load_dotenv
3
  import gradio as gr
4
  from langchain_huggingface import HuggingFaceEndpoint
 
5
 
6
  # Load environment variables
7
  load_dotenv()
8
  HF_TOKEN = os.getenv("HF_TOKEN")
9
 
10
- # Initialize the Hugging Face endpoint
11
  llm = HuggingFaceEndpoint(
12
- repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with the desired Hugging Face model
13
  huggingfacehub_api_token=HF_TOKEN.strip(),
14
  temperature=0.7,
15
- max_new_tokens=300
16
  )
17
 
18
  # Recipe generation function
19
  def suggest_recipes(ingredients):
 
20
  prompt = (
21
- f"You are an expert chef. Please suggest 3 unique recipes using the following "
22
  f"ingredients: {ingredients}. Provide a title for each recipe, include "
23
  f"preparation time, and list step-by-step directions."
24
  )
 
 
25
 
26
- try:
27
- response = llm(prompt)
28
- # Format response into multiple recipes
29
- generated_text = response.content
30
- recipes = generated_text.split("Recipe")
31
- structured_recipes = []
32
-
33
- for i, recipe in enumerate(recipes):
34
- if recipe.strip(): # Ensure non-empty recipe
35
- structured_recipes.append(f"Recipe {i+1}:\n{recipe.strip()}")
36
-
37
- return "\n\n".join(structured_recipes)
38
-
39
- except Exception as e:
40
- return f"Error: {e}"
41
 
42
  # Gradio interface
43
  with gr.Blocks() as app:
44
- gr.Markdown("# AI Recipe Generator")
45
- gr.Markdown("Enter the ingredients you have, and this app will generate 3 unique recipes along with preparation times!")
46
 
47
  with gr.Row():
48
- ingredients_input = gr.Textbox(
49
- label="Enter Ingredients (comma-separated):",
50
- placeholder="e.g., eggs, milk, flour"
51
- )
52
 
53
  recipe_output = gr.Textbox(label="Suggested Recipes:", lines=15, interactive=False)
54
 
 
2
  from dotenv import load_dotenv
3
  import gradio as gr
4
  from langchain_huggingface import HuggingFaceEndpoint
5
+ from langchain_core.messages import HumanMessage
6
 
7
  # Load environment variables
8
  load_dotenv()
9
  HF_TOKEN = os.getenv("HF_TOKEN")
10
 
11
+ # Initialize the HuggingFace inference endpoint
12
  llm = HuggingFaceEndpoint(
13
+ repo_id="flax-community/t5-recipe-generation",
14
  huggingfacehub_api_token=HF_TOKEN.strip(),
15
  temperature=0.7,
16
+ max_new_tokens=500
17
  )
18
 
19
  # Recipe generation function
20
  def suggest_recipes(ingredients):
21
+ # Create a prompt for the recipe generation
22
  prompt = (
23
+ f"You are an expert in cooking. Please suggest 3 recipes using the following "
24
  f"ingredients: {ingredients}. Provide a title for each recipe, include "
25
  f"preparation time, and list step-by-step directions."
26
  )
27
+ # Wrap the prompt in a HumanMessage object
28
+ input_message = HumanMessage(content=prompt)
29
 
30
+ # Use the HuggingFaceEndpoint model to generate a response
31
+ response = llm(input_message)
32
+ return response.content
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  # Gradio interface
35
  with gr.Blocks() as app:
36
+ gr.Markdown("# Recipe Suggestion App")
37
+ gr.Markdown("Provide the ingredients you have, and this app will suggest recipes along with preparation times!")
38
 
39
  with gr.Row():
40
+ ingredients_input = gr.Textbox(label="Enter Ingredients (comma-separated):", placeholder="e.g., eggs, milk, flour")
 
 
 
41
 
42
  recipe_output = gr.Textbox(label="Suggested Recipes:", lines=15, interactive=False)
43