import os from dotenv import load_dotenv import gradio as gr from langchain_huggingface import HuggingFaceEndpoint from langchain_core.messages import HumanMessage # Load environment variables load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") # Initialize the HuggingFace inference endpoint llm = HuggingFaceEndpoint( repo_id="flax-community/t5-recipe-generation", huggingfacehub_api_token=HF_TOKEN.strip(), temperature=0.7, max_new_tokens=150 ) # Recipe generation function def suggest_recipes(ingredients): # Create a prompt for the recipe generation prompt = ( f"You are an expert in cooking. Please suggest 3 recipes using the following " f"ingredients: {ingredients}. Provide a title for each recipe, include " f"preparation time, and list step-by-step directions." ) # Wrap the prompt in a HumanMessage object # Use the HuggingFaceEndpoint model to generate a response response = llm(prompt) return response # Gradio interface with gr.Blocks() as app: gr.Markdown("# Recipe Suggestion App") gr.Markdown("Provide the ingredients you have, and this app will suggest recipes along with preparation times!") with gr.Row(): ingredients_input = gr.Textbox(label="Enter Ingredients (comma-separated):", placeholder="e.g., eggs, milk, flour") recipe_output = gr.Textbox(label="Suggested Recipes:", lines=15, interactive=False) generate_button = gr.Button("Get Recipes") generate_button.click(suggest_recipes, inputs=ingredients_input, outputs=recipe_output) # Launch the app app.launch()