pratikshahp commited on
Commit
bcf654a
·
verified ·
1 Parent(s): 7ff7916

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -15
app.py CHANGED
@@ -3,28 +3,21 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
  from dotenv import load_dotenv
5
  import os
 
 
6
  load_dotenv()
7
 
8
- #tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
9
- #model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
10
  tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
11
  model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
12
- #hf_token=os.getenv("HF_TOKEN")
13
 
14
- # Load the model and tokenizer
15
- #model_name = "openai-community/gpt2"
16
- #tokenizer = AutoTokenizer.from_pretrained(model_name)
17
- #model = AutoModelForCausalLM.from_pretrained(model_name,token=hf_token)
18
 
19
  # Function to generate blog content
20
  def generate_blog(topic, keywords):
21
  prompt_template = f"""
22
  You are a technical content writer. Write a detailed and informative blog on the following topic.
23
-
24
  Topic: {topic}
25
-
26
  Keywords: {keywords}
27
-
28
  Make sure the blog covers the following sections:
29
  1. Introduction
30
  2. Detailed Explanation
@@ -33,10 +26,9 @@ def generate_blog(topic, keywords):
33
 
34
  Blog:
35
  """
36
-
37
- inputs = tokenizer(prompt_template, return_tensors="pt", max_length=512, truncation=True)
38
- outputs = model.generate(inputs.input_ids, max_length=800, num_return_sequences=1, temperature=0.7)
39
- blog_content = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
 
41
  return blog_content
42
 
@@ -53,4 +45,4 @@ iface = gr.Interface(
53
  )
54
 
55
  if __name__ == "__main__":
56
- iface.launch()
 
3
  import torch
4
  from dotenv import load_dotenv
5
  import os
6
+
7
+ # Load environment variables
8
  load_dotenv()
9
 
10
+ # Load the model and tokenizer
 
11
  tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
12
  model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
 
13
 
 
 
 
 
14
 
15
  # Function to generate blog content
16
  def generate_blog(topic, keywords):
17
  prompt_template = f"""
18
  You are a technical content writer. Write a detailed and informative blog on the following topic.
 
19
  Topic: {topic}
 
20
  Keywords: {keywords}
 
21
  Make sure the blog covers the following sections:
22
  1. Introduction
23
  2. Detailed Explanation
 
26
 
27
  Blog:
28
  """
29
+ input_ids = tokenizer(prompt_template, return_tensors="pt")
30
+ outputs = model.generate(**input_ids)
31
+ blog_content = tokenizer.decode(outputs[0])
 
32
 
33
  return blog_content
34
 
 
45
  )
46
 
47
  if __name__ == "__main__":
48
+ iface.launch(share=True) # Set share=True to generate a public link