Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
+
from together import Together
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
API_KEY = os.getenv("API_KEY")
|
11 |
+
|
12 |
+
# Initialize the Together client for guardrail functionality
|
13 |
+
client = Together(api_key=API_KEY)
|
14 |
+
|
15 |
+
# Initialize the Hugging Face endpoint for text generation (Mistral model)
|
16 |
+
llm = HuggingFaceEndpoint(
|
17 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with your model repo
|
18 |
+
huggingfacehub_api_token=HF_TOKEN.strip(),
|
19 |
+
temperature=0.7,
|
20 |
+
max_new_tokens=100
|
21 |
+
)
|
22 |
+
|
23 |
+
# List of topics or keywords inappropriate for kids under 16
|
24 |
+
prohibited_topics = [
|
25 |
+
"violence", "drugs", "explicit content", "profanity", "hate speech",
|
26 |
+
"self-harm", "gambling", "sexual content", "graphic descriptions"
|
27 |
+
]
|
28 |
+
|
29 |
+
# Function to handle chatbot response with TogetherAI's guardrails
|
30 |
+
def chatbot_response_with_guardrails(message):
|
31 |
+
try:
|
32 |
+
# Step 1: Generate raw response using Mistral model
|
33 |
+
raw_response = llm(message)
|
34 |
+
|
35 |
+
# Step 2: Use TogetherAI's guardrail model to check the response
|
36 |
+
response = client.completions.create(
|
37 |
+
model="Meta-Llama/LlamaGuard-2-8b", # TogetherAI guardrail model
|
38 |
+
prompt=raw_response
|
39 |
+
)
|
40 |
+
|
41 |
+
# Extract the response from TogetherAI's guardrail model
|
42 |
+
guardrail_check = response.choices[0].text.strip()
|
43 |
+
|
44 |
+
# Step 3: Check for inappropriate content in the guardrail model's output
|
45 |
+
if 'toxic' in guardrail_check.lower() or any(
|
46 |
+
topic in guardrail_check.lower() for topic in prohibited_topics
|
47 |
+
):
|
48 |
+
return "Sorry, the content is not suitable for children under 16."
|
49 |
+
|
50 |
+
# Step 4: Check raw response for prohibited topics
|
51 |
+
if any(topic in raw_response.lower() for topic in prohibited_topics):
|
52 |
+
return "Sorry, the content is not suitable for children under 16."
|
53 |
+
|
54 |
+
# If the response is safe, return the raw response
|
55 |
+
return raw_response
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error: {e}"
|
59 |
+
|
60 |
+
# Gradio Interface for Chatbot with Guardrails
|
61 |
+
with gr.Blocks() as app_with_guardrails:
|
62 |
+
gr.Markdown("## Chatbot With Kid-Safe Guardrails")
|
63 |
+
gr.Markdown(
|
64 |
+
"This chatbot ensures all responses are appropriate for children under 16."
|
65 |
+
)
|
66 |
+
|
67 |
+
# Input and output
|
68 |
+
with gr.Row():
|
69 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Type here...")
|
70 |
+
response_output = gr.Textbox(label="Guarded Response", placeholder="Bot will respond here...")
|
71 |
+
submit_button = gr.Button("Send")
|
72 |
+
|
73 |
+
# Button click event
|
74 |
+
submit_button.click(
|
75 |
+
chatbot_response_with_guardrails,
|
76 |
+
inputs=[user_input],
|
77 |
+
outputs=[response_output]
|
78 |
+
)
|
79 |
+
|
80 |
+
# Launch the app
|
81 |
+
if __name__ == "__main__":
|
82 |
+
app_with_guardrails.launch()
|