Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
from langchain_huggingface import HuggingFaceEndpoint | |
# Load environment variables | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Initialize the Hugging Face endpoint for inference | |
llm = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with your model repo | |
huggingfacehub_api_token=HF_TOKEN.strip(), | |
temperature=0.7, | |
max_new_tokens=100 | |
) | |
# Function to handle chatbot response | |
def chatbot_response(message): | |
try: | |
response = llm(message) | |
return response | |
except Exception as e: | |
return f"Error: {e}" | |
# Gradio Interface for Chatbot without Guardrails | |
with gr.Blocks() as app_without_guardrails: | |
gr.Markdown("## Chatbot Without Guardrails") | |
gr.Markdown("This chatbot uses the model directly without applying any content filtering.") | |
# Input and output | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Type here...") | |
response_output = gr.Textbox(label="Response", placeholder="Bot will respond here...") | |
submit_button = gr.Button("Send") | |
# Button click event | |
submit_button.click( | |
chatbot_response, | |
inputs=[user_input], | |
outputs=[response_output] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
app_without_guardrails.launch() | |