File size: 2,734 Bytes
a862012 3ffccb1 a862012 2eaf991 a862012 2eaf991 db11e43 2eaf991 db11e43 2eaf991 db11e43 2eaf991 a862012 2eaf991 a862012 db11e43 a862012 db11e43 a862012 db11e43 a862012 db11e43 a862012 db11e43 a862012 2eaf991 a862012 2eaf991 a862012 2eaf991 a862012 2eaf991 a862012 2eaf991 a862012 2eaf991 a862012 2eaf991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
from helper import get_together_api_key
from guardrail import is_safe
from together import Together
# Initialize Together client
client = Together(api_key=get_together_api_key())
# Gradio interface functions
def run_action(message, history):
global game_state, game_running # Access the global game state and game status
if not game_running:
return "The game has ended. Type 'restart the game' to play again."
if message.lower() == "start game":
return game_state["start"]
if message.lower() == "restart the game":
game_state = initialize_game_state()
return "Game restarted! " + game_state["start"]
if message.lower() == "exit":
game_running = False
return "The game has ended. Type 'restart the game' to play again."
system_prompt = """You are a financial assistant. You can only answer finance-related queries.
- Do not answer non-finance questions.
- Answer in 50 words
- Ensure responses adhere to the safety policy."""
messages = [{"role": "system", "content": system_prompt}]
# Convert history into the appropriate format
for entry in history:
if entry["role"] == "user":
messages.append({"role": "user", "content": entry["content"]})
elif entry["role"] == "assistant":
messages.append({"role": "assistant", "content": entry["content"]})
# Add the user's current action
messages.append({"role": "user", "content": message})
# Get the model's response
model_output = client.chat.completions.create(
model="meta-llama/Llama-3-70b-chat-hf",
messages=messages,
)
return model_output.choices[0].message.content
def main_loop(message, history):
"""
Main loop for the chatbot to handle user input.
"""
# Validate the user's input for safety
if not is_safe(message):
return "Your input violates our safety policy. Please try again with a finance-related query."
# Generate and validate the response
return run_action(message, history)
# Gradio Chat Interface
demo = gr.ChatInterface(
main_loop,
chatbot=gr.Chatbot(
height=450,
placeholder="Ask a finance-related question. Type 'exit' to quit.",
type="messages", # Proper rendering of chat format
),
textbox=gr.Textbox(
placeholder="What do you want to ask about finance?",
container=False,
scale=7,
),
title="Finance Chatbot",
theme="Monochrome",
examples=["What is compound interest?", "How to save for retirement?", "What are tax-saving options?"],
cache_examples=False,
)
# Launch the Gradio app
demo.launch(share=True, server_name="0.0.0.0") |