AI-or-Not-v3 / app.py
cmckinle's picture
Update app.py
cf9edec verified
raw
history blame
8.41 kB
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from tqdm import tqdm
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request
# Define models
models = [
"umm-maybe/AI-image-detector",
"Organika/sdxl-detector",
"cmckinle/sdxl-flux-detector",
]
pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")
fin_sum = []
uid = uuid.uuid4()
# Softmax function
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
# Function to extract images from zip
def extract_zip(zip_file):
temp_dir = tempfile.mkdtemp() # Temporary directory
with zipfile.ZipFile(zip_file, 'r') as z:
z.extractall(temp_dir)
return temp_dir
# Function to classify images in a folder
def classify_images(image_dir, model_pipeline):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
pred = model_pipeline(img)
pred_label = np.argmax([x['score'] for x in pred])
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name}: {e}")
return labels, preds, images
# Function to generate evaluation metrics
def evaluate_model(labels, preds):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report = classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["AI", "Real"])
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.close(fig)
fig_roc, ax_roc = plt.subplots()
ax_roc.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax_roc.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax_roc.set_xlim([0.0, 1.0])
ax_roc.set_ylim([0.0, 1.05])
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_roc.set_title('Receiver Operating Characteristic (ROC) Curve')
ax_roc.legend(loc="lower right")
plt.close(fig_roc)
return accuracy, roc_score, report, fig, fig_roc
# Gradio function for batch image processing with all models
def process_zip(zip_file):
extracted_dir = extract_zip(zip_file.name)
# Run classification for each model
results = {}
for idx, pipe in enumerate([pipe0, pipe1, pipe2]):
labels, preds, images = classify_images(extracted_dir, pipe)
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
# Store results for each model
results[f'Model_{idx}_accuracy'] = accuracy
results[f'Model_{idx}_roc_score'] = roc_score
results[f'Model_{idx}_report'] = report
results[f'Model_{idx}_cm_fig'] = cm_fig
results[f'Model_{idx}_roc_fig'] = roc_fig
shutil.rmtree(extracted_dir) # Clean up extracted files
# Return results for all three models
return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'],
results['Model_0_cm_fig'], results['Model_0_roc_fig'],
results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'],
results['Model_1_cm_fig'], results['Model_1_roc_fig'],
results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'],
results['Model_2_cm_fig'], results['Model_2_roc_fig'])
# Single image classification functions
def image_classifier0(image):
labels = ["AI", "Real"]
outputs = pipe0(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier1(image):
labels = ["AI", "Real"]
outputs = pipe1(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier2(image):
labels = ["AI", "Real"]
outputs = pipe2(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found<br>Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out:.4f}",
"AI": f"{fin_sub:.4f}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
# Set up Gradio app
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
with gr.Tabs():
# Tab for single image detection
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability")
with gr.Row():
for i, model in enumerate(models):
with gr.Box():
gr.HTML(f"""<b>Testing on Model {i}: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
globals()[f'outp{i}'] = gr.HTML("""""")
globals()[f'n_out{i}'] = gr.Label(label="Output")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(image_classifier0, [inp], [n_out0]).then(
image_classifier1, [inp], [n_out1]).then(
image_classifier2, [inp], [n_out2]).then(
tot_prob, None, fin, show_progress=False)
# Tab for batch processing
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
# Outputs for all three models
for i in range(3):
with gr.Group():
gr.Markdown(f"### Results for Model {i}")
output_acc = gr.Label(label=f"Model {i} Accuracy")
output_roc = gr.Label(label=f"Model {i} ROC Score")
output_report = gr.Textbox(label=f"Model {i} Classification Report", lines=10)
output_cm = gr.Plot(label=f"Model {i} Confusion Matrix")
output_roc_plot = gr.Plot(label=f"Model {i} ROC Curve")
batch_btn = gr.Button("Process Batch")
# Connect batch processing
batch_btn.click(process_zip, zip_file,
[output_acc, output_roc, output_report, output_cm, output_roc_plot] * 3) # For all 3 models
app.launch(show_api=False, max_threads=24)