LegoGPT-Demo / app.py
Ava Pun
Add data collection
5218da5
import json
import os
import shutil
import subprocess
import time
import uuid
import zipfile
from dataclasses import fields
from urllib.request import urlretrieve
import gradio as gr
import torch.multiprocessing as mp
import transformers
from legogpt.models import LegoGPT, LegoGPTConfig
def setup():
# Set up Gurobi licence
licence_filename = 'gurobi.lic'
licence_lines = []
for secret_name in ['WLSACCESSID', 'WLSSECRET', 'LICENSEID']:
secret = os.environ.get(secret_name)
if not secret:
raise ValueError(f'Env variable {secret_name} not found. Please set it in the Hugging Face Space settings.')
licence_lines.append(f'{secret_name}={secret}\n')
with open(licence_filename, 'w') as f:
f.writelines(licence_lines)
os.environ['GRB_LICENSE_FILE'] = os.path.abspath(licence_filename)
# Download LDraw part library and set LDraw library path
ldraw_zip_url = 'https://library.ldraw.org/library/updates/complete.zip'
ldraw_zip_filename = 'complete.zip'
urlretrieve(ldraw_zip_url, ldraw_zip_filename)
with zipfile.ZipFile(ldraw_zip_filename) as zip_ref:
zip_ref.extractall()
os.environ['LDRAW_LIBRARY_PATH'] = os.path.abspath('ldraw')
def main():
if os.environ.get('IS_HF_SPACE') == '1':
print('Running in Hugging Face Space, setting up environment...')
setup()
model_cfg = LegoGPTConfig(max_regenerations=5)
generator = LegoGenerator(LegoGPT(model_cfg))
# Define inputs and outputs
in_prompt = gr.Textbox(label='Prompt', placeholder='Enter a prompt to generate a LEGO model.', max_length=500)
in_optout = gr.Checkbox(label='Do not save my data',
info='We may collect model inputs and outputs to help us improve the model. '
'Your data will never be shared or used for any other purpose. '
'If you wish to opt out of data collection, please check the box below.')
in_temperature = gr.Slider(0.01, 2.0, value=model_cfg.temperature, step=0.01,
label='Temperature', info=get_help_string('temperature'))
in_seed = gr.Number(value=42, label='Seed', info='Random seed for generation.',
precision=0, minimum=0, maximum=2 ** 32 - 1, step=1)
in_bricks = gr.Number(value=model_cfg.max_bricks, label='Max bricks', info=get_help_string('max_bricks'),
precision=0, minimum=1, step=1)
in_rejections = gr.Number(value=model_cfg.max_brick_rejections, label='Max brick rejections',
info=get_help_string('max_brick_rejections'), precision=0, minimum=0, step=1)
in_regenerations = gr.Number(value=model_cfg.max_regenerations, label='Max regenerations',
info=get_help_string('max_regenerations'), precision=0, minimum=0, step=1)
out_img = gr.Image(label='Output image', format='png')
out_txt = gr.Textbox(label='Output LEGO bricks', lines=5, max_lines=5, show_copy_button=True,
info='The LEGO structure in text format. Each line of the form "hxw (x,y,z)" represents a '
'1-unit-tall rectangular brick with dimensions hxw placed at coordinates (x,y,z).')
# Define Gradio interface
demo = gr.Interface(
fn=generator.generate_lego_subprocess,
title='LegoGPT Demo',
description='Official demo for [LegoGPT](https://avalovelace1.github.io/LegoGPT/), the first approach for generating physically stable LEGO brick models from text prompts.\n\n'
'The model is restricted to creating structures made of 1-unit-tall cuboid bricks on a 20x20x20 grid. It was trained on a dataset of 21 object categories: '
'*basket, bed, bench, birdhouse, bookshelf, bottle, bowl, bus, camera, car, chair, guitar, jar, mug, piano, pot, sofa, table, tower, train, vessel.* '
'Performance on prompts from outside these categories may be limited. This demo does not include texturing or coloring.',
inputs=[in_prompt, in_optout],
additional_inputs=[in_temperature, in_seed, in_bricks, in_rejections, in_regenerations],
outputs=[out_img, out_txt],
flagging_mode='never',
)
with demo:
with gr.Row():
examples = get_examples()
dummy_name = gr.Textbox(visible=False, label='Name')
dummy_out_img = gr.Image(visible=False, label='Result')
gr.Examples(
examples=[[name, example['prompt'], example['temperature'], example['seed'], example['output_img']]
for name, example in examples.items()],
inputs=[dummy_name, in_prompt, in_temperature, in_seed, dummy_out_img],
outputs=[out_img, out_txt],
fn=lambda *args: (args[-1], examples[args[0]]['output_txt']),
run_on_click=True,
)
concurrency_limit = 2 if os.environ.get('CONCURRENCY_LIMIT') is None else int(os.environ.get('CONCURRENCY_LIMIT'))
demo.queue(default_concurrency_limit=concurrency_limit)
demo.launch(share=True)
class LegoGenerator:
def __init__(self, model: LegoGPT):
self.model = model
self.ctx = mp.get_context('spawn')
def generate_lego(
self,
prompt: str,
do_not_save_data: bool,
temperature: float | None,
seed: int | None,
max_bricks: int | None,
max_brick_rejections: int | None,
max_regenerations: int | None,
) -> (str, str):
# Set model parameters
if temperature is not None: self.model.temperature = temperature
if max_bricks is not None: self.model.max_bricks = max_bricks
if max_brick_rejections is not None: self.model.max_brick_rejections = max_brick_rejections
if max_regenerations is not None: self.model.max_regenerations = max_regenerations
if seed is not None: transformers.set_seed(seed)
# Generate LEGO
print(f'Generating LEGO for prompt: "{prompt}"')
start_time = time.time()
output = self.model(prompt)
# Write output LDR to file
output_dir = os.path.abspath('out')
output_uuid = str(uuid.uuid4())
os.makedirs(output_dir, exist_ok=True)
ldr_filename = os.path.join(output_dir, f'{output_uuid}.ldr')
with open(ldr_filename, 'w') as f:
f.write(output['lego'].to_ldr())
generation_time = time.time() - start_time
print(f'Finished generation in {generation_time:.1f}s!')
# Render LEGO model to image
print('Rendering image...')
img_filename = os.path.join(output_dir, f'{output_uuid}.png')
subprocess.run(['python', 'render_lego.py', '--in_file', ldr_filename, '--out_file', img_filename],
check=True) # Run render as a subprocess to prevent issues with Blender
rendering_time = time.time() - start_time - generation_time
print(f'Finished rendering in {rendering_time:.1f}s!')
# Save data persistently
if not do_not_save_data:
data_dir = '/data/apun/legogpt_demo_out'
os.makedirs(data_dir, exist_ok=True)
# Copy output image to persistent storage
img_copy_filename = os.path.join(data_dir, f'{output_uuid}.png')
shutil.copy(img_filename, img_copy_filename)
# Save metadata
metadata_filename = os.path.join(data_dir, f'{output_uuid}.json')
with open(metadata_filename, 'w') as f:
json.dump({
'prompt': prompt,
'temperature': self.model.temperature,
'seed': seed,
'max_bricks': self.model.max_bricks,
'max_brick_rejections': self.model.max_brick_rejections,
'max_regenerations': self.model.max_regenerations,
'start_timestamp': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time)),
'generation_time': generation_time,
'rendering_time': rendering_time,
'output_txt': output['lego'].to_txt(),
}, f)
print(f'Saved data to {metadata_filename}.')
return img_filename, output['lego'].to_txt()
def generate_lego_subprocess(self, *args) -> (str, str):
"""
Run generation as a subprocess so that multiple requests can be handled concurrently.
"""
with self.ctx.Pool(1) as pool:
return pool.starmap(self.generate_lego, [args])[0]
def get_help_string(field_name: str) -> str:
"""
:param field_name: Name of a field in LegoGPTConfig.
:return: Help string for the field.
"""
data_fields = fields(LegoGPTConfig)
name_field = next(f for f in data_fields if f.name == field_name)
return name_field.metadata['help']
def get_examples(example_dir: str = os.path.abspath('examples')) -> dict[str, dict[str, str]]:
examples_file = os.path.join(example_dir, 'examples.json')
with open(examples_file) as f:
examples = json.load(f)
for example in examples.values():
example['output_img'] = os.path.join(example_dir, example['output_img'])
return examples
if __name__ == '__main__':
main()