Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import numpy
|
2 |
-
import keras
|
3 |
-
import gradio
|
4 |
-
|
5 |
-
# Building the neural network
|
6 |
-
model1 = keras.models.Sequential()
|
7 |
-
model1.add(keras.layers.InputLayer(input_shape=(101, 636, 1)))
|
8 |
-
model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same', strides=1))
|
9 |
-
model1.add(keras.layers.Conv2D(4, (9, 9), activation='relu', padding='same'))
|
10 |
-
model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same', strides=1))
|
11 |
-
model1.add(keras.layers.Conv2D(8, (7, 7), activation='relu', padding='same'))
|
12 |
-
model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same'))
|
13 |
-
model1.add(keras.layers.Conv2D(16, (5, 5), activation='relu', padding='same', strides=1))
|
14 |
-
model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same'))
|
15 |
-
model1.add(keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', strides=1))
|
16 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
17 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same', strides=1))
|
18 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
19 |
-
model1.add(keras.layers.Conv2D(16, (2, 2), activation='relu', padding='same'))
|
20 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
21 |
-
model1.add(keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
|
22 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
23 |
-
model1.add(keras.layers.Conv2D(4, (7, 7), activation='tanh', padding='same'))
|
24 |
-
model1.add(keras.layers.UpSampling2D((1, 1)))
|
25 |
-
model1.add(keras.layers.Conv2D(3, (9, 9), activation='tanh', padding='same'))
|
26 |
-
|
27 |
-
#Loading the weights in the architecture (The file should be stored in the same directory as the code)
|
28 |
-
model1.load_weights('modelV13_500trained_1.h5')
|
29 |
-
|
30 |
-
def predict(mask):
|
31 |
-
X = numpy.round((mask/255.0))[numpy.newaxis, :, :, numpy.newaxis]
|
32 |
-
v = model1.predict(X)*255
|
33 |
-
output = (v - v.min()) / (v.max() - v.min())
|
34 |
-
print(output.shape)
|
35 |
-
return output[0, :, :, 0], output[0, :, :, 1], output[0, :, :, 2]
|
36 |
-
|
37 |
-
demo = gradio.Interface(fn=predict,
|
38 |
-
inputs=gradio.Image(image_mode="L", source="canvas", tool="sketch", values=numpy.zeros(636, 101), #, value=numpy.round(numpy.random.rand(101, 636, 3))),
|
39 |
-
outputs=[gradio.Image(image_mode="L"), gradio.Image(image_mode="L"), gradio.Image(image_mode="L")])
|
40 |
-
|
41 |
-
if __name__ == "__main__":
|
42 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|