Spaces:
Sleeping
Sleeping
File size: 9,477 Bytes
5021a0c 63f1d6d 4337b98 5021a0c 4bccf88 e42e13d a4e47b1 0596274 44c7b6f eae282d 284179e eae282d 27bebc1 4bccf88 d3fce98 27bebc1 5021a0c 552e1db 4bccf88 552e1db 5021a0c 552e1db 4bccf88 5021a0c 27bebc1 4bccf88 27bebc1 4bccf88 5021a0c 552e1db 27bebc1 5021a0c 92f530c 5021a0c 552e1db 5021a0c 27bebc1 5021a0c 552e1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub import AudioSegment
def get_silence(duration_ms=1000):
# Create silent audio segment with specified parameters
silent_audio = AudioSegment.silent(
duration=duration_ms,
frame_rate=24000 # 24kHz sampling rate
)
# Set audio parameters
silent_audio = silent_audio.set_channels(1) # Mono
silent_audio = silent_audio.set_sample_width(4) # 32-bit (4 bytes per sample)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
# Export with specific bitrate and codec parameters
silent_audio.export(
tmp_file.name,
format="mp3",
bitrate="48k",
parameters=[
"-ac", "1", # Mono
"-ar", "24000", # Sample rate
"-sample_fmt", "s32", # 32-bit samples
"-codec:a", "libmp3lame" # MP3 codec
]
)
return tmp_file.name
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
async def text_to_speech_segment(text_segment, voice, rate, pitch):
"""Processes a single text segment for voice commands and generates audio."""
current_voice_full = voice
current_voice_short = current_voice_full.split(" - ")[0] if current_voice_full else ""
current_rate = rate
current_pitch = pitch
processed_text = text_segment
voice1_full = "en-AU-WilliamNeural - en-AU (Male)"
voice1_short = voice1_full.split(" - ")[0]
voice1F_full ="en-GB-SoniaNeural - en-GB (Female)"
voice1F_short = voice1F_full.split(" - ")[0]
voice2_full = "en-GB-RyanNeural - en-GB (Male)"
voice2_short = voice2_full.split(" - ")[0]
voice2F_full = "en-US-JennyNeural - en-US (Female)"
voice2F_short = voice2F_full.split(" - ")[0]
voice3_full ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
voice3_short = voice3_full.split(" - ")[0]
voice3F_full = "en-HK-YanNeural - en-HK (Female)"
voice3F_short = voice3F_full.split(" - ")[0]
voice4_full = "en-GB-ThomasNeural - en-GB (Male)"
voice4_short = voice4_full.split(" - ")[0]
voice4F_full ="en-US-EmmaNeural - en-US (Female)"
voice4F_short = voice4F_full.split(" - ")[0]
voice5_full = "en-GB-RyanNeural - en-GB (Male)" #Old Man
voice5_short = voice5_full.split(" - ")[0]
voice6_full = "en-GB-MaisieNeural - en-GB (Female)" #Child
voice6_short = voice6_full.split(" - ")[0]
if text_segment.startswith("1F"):
current_voice_short = voice1F_short
current_pitch = 25
processed_text = text_segment[2:].strip()
elif text_segment.startswith("2F"):
current_voice_short = voice2F_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("3F"):
current_voice_short = voice3F_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("4F"):
current_voice_short = voice4F_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("1M"):
current_voice_short = voice1_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("2M"):
current_voice_short = voice2_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("3M"):
current_voice_short = voice3_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("4M"):
current_voice_short = voice4_short
processed_text = text_segment[2:].strip()
elif text_segment.startswith("1O"): # Old man voice
current_voice_short = voice5_short
current_pitch = -20
current_rate = -10
processed_text = text_segment[2:].strip()
elif text_segment.startswith("1C"): #Child voice
current_voice_short = voice6_short
processed_text = text_segment[2:].strip()
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
return audio_path
async def transcript_to_speech(transcript_text, voice, rate, pitch):
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
segments = re.split(r'[“”"]', transcript_text)
audio_paths = []
for segment in segments:
segment = segment.strip()
if segment:
# Check if the segment starts with a timestamp
timestamp_match = re.match(r'(\d+):(\d+)(?:\.(\d+))?\s+(.*)', segment)
if timestamp_match:
minutes, seconds, milliseconds_str, text_with_commands = timestamp_match.groups()
start_time_ms = int(minutes) * 60000 + int(seconds) * 1000 + (int(milliseconds_str) * 10 if milliseconds_str else 0)
audio_path = await text_to_speech_segment(text_with_commands, voice, rate, pitch)
audio_paths.append({'start': start_time_ms, 'path': audio_path})
else:
# Process segments without timestamps (for voice switching)
audio_path = await text_to_speech_segment(segment, voice, rate, pitch)
if audio_path:
audio_paths.append({'start': None, 'path': audio_path}) # No specific start time
if not audio_paths:
return None, "No audio segments generated."
# Handle combining audio with timestamps
timed_segments = [item for item in audio_paths if item['start'] is not None]
non_timed_segments = [item for item in audio_paths if item['start'] is None and item['path']]
if timed_segments:
max_end_time_ms = 0
processed_timed_segments = []
for item in timed_segments:
audio = AudioSegment.from_mp3(item['path'])
processed_timed_segments.append({'start': item['start'], 'audio': audio, 'path': item['path']})
max_end_time_ms = max(max_end_time_ms, item['start'] + len(audio))
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in processed_timed_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
os.remove(segment['path'])
# Append non-timed segments sequentially
for item in non_timed_segments:
audio = AudioSegment.from_mp3(item['path'])
final_audio += audio
os.remove(item['path'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
final_audio.export(combined_audio_path, format="mp3")
return combined_audio_path, None
elif non_timed_segments:
# Combine non-timed segments sequentially if no timestamps are found
combined_audio = AudioSegment.empty()
for item in non_timed_segments:
audio = AudioSegment.from_mp3(item['path'])
combined_audio += audio
os.remove(item['path'])
combined_audio_path = tempfile.mktemp(suffix=".mp3")
combined_audio.export(combined_audio_path, format="mp3")
return combined_audio_path, None
return None, "No processable audio segments found."
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch):
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch))
return audio, warning
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """
Process text, handling both timestamped transcripts and voice switching using quote marks and prefixes.
Separate segments by quote marks ("). For timestamped segments, use the format: `minutes:seconds[.milliseconds] text`.
Voice prefixes (e.g., 1F, 1C) can be used at the beginning of a quoted segment to switch voices.
Example:
```
0:00 "This"
"0:14 is the story of little Red Riding Hood"
"0:38 1F Grandma isn’t feeling very well."
"0:48 1C Yes, said Little Red Riding Hood."
"and then the default voice continues"
```
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text / Transcript", lines=10, placeholder='0:00 "This"\n"0:14 is the story..."\n"1F Hello"'),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Combined TTS: Timestamps and Voice Switching",
description=description,
analytics_enabled=False,
allow_flagging=False
)
return demo
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch() |