cnph001's picture
Update app.py
0596274 verified
raw
history blame
5.29 kB
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re # Import the regular expression module
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text-to-speech function for a single paragraph
async def paragraph_to_speech(text, voice, rate, pitch):
voice1 ="en-US-AndrewNeural - en-US (Male)" #good for reading
voice1F ="en-US-EmmaNeural - en-US (Female)"
voice2 = "en-US-GuyNeural (Male)"
voice2F = "en-US-JennyNeural (Female)"
voice3 = "en-AU-WilliamNeural - en-AU (Male)"
voice3F = "en-HK-YanNeural - en-HK (Female)"
voice4 = "en-GB-MaisieNeural - en-GB (Female)" #Child
if not text.strip():
return None
if text.startswith("1F"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice1F.split(" - ")[0]
elif text.startswith("2F"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice2F.split(" - ")[0]
elif text.startswith("3F"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice3F.split(" - ")[0]
elif text.startswith("1M"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice2.split(" - ")[0]
elif text.startswith("2M"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice3.split(" - ")[0]
elif text.startswith("1C"):
text2 = text[2:] # Remove the first two characters ("FF")
voice_short_name =voice4.split(" - ")[0]
else:
# Use selected voice, or fallback to default
voice_short_name = (voice or default_voice).split(" - ")[0]
text2=text
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text2, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# Main text-to-speech function that processes paragraphs
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
# Split by two or more newline characters, optionally preceded by carriage returns
paragraphs = [p for p in re.split(r'\r?\n\r?\n+', text) if p.strip()]
audio_files = []
for paragraph in paragraphs:
audio_path = await paragraph_to_speech(paragraph, voice, rate, pitch)
if audio_path:
audio_files.append(audio_path)
if not audio_files:
return None, None # No audio generated
# Combine audio files if there are multiple paragraphs
if len(audio_files) == 1:
return audio_files[0], None
else:
# Simple concatenation for now - consider using a proper audio editing library for smoother transitions
combined_audio_path = tempfile.mktemp(suffix=".mp3")
with open(combined_audio_path, 'wb') as outfile:
for filename in audio_files:
with open(filename, 'rb') as infile:
outfile.write(infile.read())
os.remove(filename) # Clean up individual files
return combined_audio_path, None
# Gradio interface function
@spaces.GPU
def tts_interface(text, voice, rate, pitch):
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
return audio, warning
# Create Gradio application
import gradio as gr
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewNeural - en-US (Male)" # 👈 Pick one of the available voices
description = """
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Jan, 1M:US_Guy, 2M:AU_William, 1C: Childvoice
Enter your text, select a voice, and adjust the speech rate and pitch.
The application will process your text paragraph by paragraph (separated by two blank lines).
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines."),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Voicecloning.be Text-to-Speech (Paragraph by Paragraph)",
description=description,
article="Process text paragraph by paragraph for smoother output.",
analytics_enabled=False,
allow_flagging=False
)
return demo
# Run the application
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()