|
help me analyse this code, it is for a tts hugginface space |
|
import spaces |
|
import gradio as gr |
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import os |
|
import re |
|
from pathlib import Path |
|
from pydub import AudioSegment |
|
|
|
def get_silence(duration_ms=1000): |
|
|
|
silent_audio = AudioSegment.silent( |
|
duration=duration_ms, |
|
frame_rate=24000 |
|
) |
|
|
|
|
|
silent_audio = silent_audio.set_channels(1) |
|
silent_audio = silent_audio.set_sample_width(4) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: |
|
|
|
silent_audio.export( |
|
tmp_file.name, |
|
format="mp3", |
|
bitrate="48k", |
|
parameters=[ |
|
"-ac", "1", |
|
"-ar", "24000", |
|
"-sample_fmt", "s32", |
|
"-codec:a", "libmp3lame" |
|
] |
|
) |
|
return tmp_file.name |
|
|
|
|
|
async def get_voices(): |
|
voices = await edge_tts.list_voices() |
|
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices} |
|
|
|
async def process_transcript_line(line, voice, rate, pitch): |
|
"""Processes a single transcript line to extract time, voice commands, and generate audio.""" |
|
match = re.match(r'(\d+):(\d+)(?:\.(\d+))?\s+(.*)', line) |
|
if match: |
|
minutes, seconds, milliseconds_str, text_with_commands = match.groups() |
|
start_time_ms = int(minutes) * 60000 + int(seconds) * 1000 + (int(milliseconds_str) * 10 if milliseconds_str else 0) |
|
if not text_with_commands.strip(): |
|
return start_time_ms, None |
|
|
|
current_voice = voice |
|
current_rate = rate |
|
current_pitch = pitch |
|
processed_text = text_with_commands |
|
|
|
voice1 = "en-AU-WilliamNeural - en-AU (Male)" |
|
voice1F ="en-GB-SoniaNeural - en-GB (Female)" |
|
voice2 = "en-GB-RyanNeural - en-GB (Male)" |
|
voice2F = "en-US-JennyNeural - en-US (Female)" |
|
voice3 ="en-US-BrianMultilingualNeural - en-US (Male)" |
|
voice3F = "en-HK-YanNeural - en-HK (Female)" |
|
voice4 = "en-GB-ThomasNeural - en-GB (Male)" |
|
voice4F ="en-US-EmmaNeural - en-US (Female)" |
|
voice5 = "en-GB-RyanNeural - en-GB (Male)" |
|
voice6 = "en-GB-MaisieNeural - en-GB (Female)" |
|
|
|
if text_with_commands.startswith("1F"): |
|
current_voice = voice1F.split(" - ")[0] |
|
current_pitch = 25 |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("2F"): |
|
current_voice = voice2F.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("3F"): |
|
current_voice = voice3F.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("4F"): |
|
current_voice = voice4F.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("1M"): |
|
current_voice = voice1.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("2M"): |
|
current_voice = voice2.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("3M"): |
|
current_voice = voice3.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("4M"): |
|
current_voice = voice4.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("1O"): |
|
current_voice = voice5.split(" - ")[0] |
|
current_pitch = -20 |
|
current_rate = -10 |
|
processed_text = text_with_commands[2:].strip() |
|
elif text_with_commands.startswith("1C"): |
|
current_voice = voice6.split(" - ")[0] |
|
processed_text = text_with_commands[2:].strip() |
|
|
|
rate_str = f"{current_rate:+d}%" |
|
pitch_str = f"{current_pitch:+d}Hz" |
|
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: |
|
audio_path = tmp_file.name |
|
await communicate.save(audio_path) |
|
return start_time_ms, audio_path |
|
return None, None |
|
|
|
async def transcript_to_speech(transcript_text, voice, rate, pitch): |
|
if not transcript_text.strip(): |
|
return None, gr.Warning("Please enter transcript text.") |
|
if not voice: |
|
return None, gr.Warning("Please select a voice.") |
|
|
|
lines = transcript_text.strip().split('\n') |
|
audio_segments_with_time = [] |
|
max_end_time_ms = 0 |
|
|
|
for line in lines: |
|
start_time, audio_path = await process_transcript_line(line, voice, rate, pitch) |
|
if start_time is not None and audio_path: |
|
audio = AudioSegment.from_mp3(audio_path) |
|
audio_segments_with_time.append({'start': start_time, 'audio': audio, 'path': audio_path}) |
|
max_end_time_ms = max(max_end_time_ms, start_time + len(audio)) |
|
elif audio_path: |
|
os.remove(audio_path) |
|
|
|
if not audio_segments_with_time: |
|
return None, "No valid transcript lines found." |
|
|
|
|
|
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000) |
|
|
|
for segment in audio_segments_with_time: |
|
final_audio = final_audio.overlay(segment['audio'], position=segment['start']) |
|
os.remove(segment['path']) |
|
|
|
combined_audio_path = tempfile.mktemp(suffix=".mp3") |
|
final_audio.export(combined_audio_path, format="mp3") |
|
return combined_audio_path, None |
|
|
|
@spaces.GPU |
|
def tts_interface(transcript, voice, rate, pitch): |
|
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch)) |
|
return audio, warning |
|
|
|
async def create_demo(): |
|
voices = await get_voices() |
|
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" |
|
description = """ |
|
Process YouTube transcript text with timestamps to generate synchronized audio. |
|
Each line should be in the format: `minutes:seconds[.milliseconds] text`. |
|
Voice prefixes (e.g., 1F, 1C) can be used at the beginning of a line to switch voices. |
|
Example: |
|
``` |
|
0:00 This |
|
0:14 is the story of little Red Riding Hood |
|
0:38 1F Grandma isn’t feeling very well. |
|
0:48 1C Yes, said Little Red Riding Hood. |
|
``` |
|
""" |
|
demo = gr.Interface( |
|
fn=tts_interface, |
|
inputs=[ |
|
gr.Textbox(label="YouTube Transcript", lines=10, placeholder="0:00 This\n0:14 is the story...\n0:38 1F Grandma..."), |
|
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice), |
|
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1), |
|
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1) |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Audio", type="filepath"), |
|
gr.Markdown(label="Warning", visible=False) |
|
], |
|
title="TTS for YouTube Transcripts with Voice Switching", |
|
description=description, |
|
analytics_enabled=False, |
|
allow_flagging=False |
|
) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = asyncio.run(create_demo()) |
|
demo.launch() |