cnph001's picture
Update app.py
552e1db verified
raw
history blame
9.4 kB
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re # Import the regular expression module
import struct
import wave
# Function to create a temporary silent WAV file
def create_silent_wav(duration, temp_dir, sample_rate=44100, num_channels=1, sample_width=2):
"""Creates a temporary WAV file containing silence.
Args:
duration (float): Duration of silence in seconds.
temp_dir (str): Directory to save the temporary file.
sample_rate (int): Sample rate of the audio (samples per second).
num_channels (int): Number of audio channels (1 for mono, 2 for stereo).
sample_width (int): Sample width in bytes (e.g., 2 for 16-bit).
Returns:
str: Path to the temporary silent WAV file.
"""
num_frames = int(duration * sample_rate)
silent_data = b'\x00' * (num_frames * num_channels * sample_width)
temp_wav_path = os.path.join(temp_dir, f"silent_{duration}.wav")
with wave.open(temp_wav_path, 'w') as wf:
wf.setnchannels(num_channels)
wf.setframerate(sample_rate)
wf.setsampwidth(sample_width)
wf.writeframes(silent_data)
return temp_wav_path
# Text-to-speech function for a single paragraph with SS handling
async def paragraph_to_speech(text, voice, rate, pitch):
voice3 ="en-US-BrianMultilingualNeural - en-US (Male)" #good for reading
voice1F ="en-US-EmmaNeural - en-US (Female)"
voice2 = "it-IT-GiuseppeMultilingualNeural - it-IT (Male)"
voice2F = "en-US-JennyNeural - en-US (Female)"
voice1 = "en-AU-WilliamNeural - en-AU (Male)"
voice3F = "en-HK-YanNeural - en-HK (Female)"
voice4 = "en-GB-MaisieNeural - en-GB (Female)" #Child
voice5 = "en-GB-RyanNeural - en-GB (Male)" #Old Man
if not text.strip():
return None, [] # Return None for audio path and empty list for silence
audio_segments = []
temp_dir = tempfile.gettempdir()
parts = re.split(r'(SS\d+\.?\d*)', text)
for part in parts:
if re.match(r'SS\d+\.?\d*', part):
try:
silence_duration = float(part[2:])
# Assuming default WAV parameters for silence
silent_wav_path = create_silent_wav(silence_duration, temp_dir)
audio_segments.append(silent_wav_path)
except ValueError:
print(f"Warning: Invalid silence duration format: {part}")
elif part.strip():
processed_text = part
current_voice = voice
current_rate = rate
current_pitch = pitch
if part.startswith("1F"):
processed_text = part[2:]
current_voice = voice1F.split(" - ")[0]
elif part.startswith("2F"):
processed_text = part[2:]
current_voice = voice2F.split(" - ")[0]
elif part.startswith("3F"):
processed_text = part[2:]
current_voice = voice3F.split(" - ")[0]
elif part.startswith("1M"):
processed_text = part[2:]
current_voice = voice1.split(" - ")[0]
elif part.startswith("2M"):
processed_text = part[2:]
current_voice = voice2.split(" - ")[0]
elif part.startswith("3M"):
processed_text = part[2:]
current_voice = voice3.split(" - ")[0]
elif part.startswith("1C"):
processed_text = part[2:]
current_voice = voice4.split(" - ")[0]
elif part.startswith("1O"):
processed_text = part[2:]
current_voice = voice5.split(" - ")[0]
current_pitch = -30
current_rate = -20
else:
current_voice = (voice or default_voice).split(" - ")[0]
processed_text=part[:]
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
audio_segments.append(tmp_path)
else:
audio_segments.append(None) # Empty string
return audio_segments, [] # Returning empty list for silence times as we are directly creating silent WAV
# Main text-to-speech function that processes paragraphs and silence
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
paragraphs = [p.strip() for p in re.split(r'"', text) if p.strip()]
final_audio_segments = []
for paragraph in paragraphs:
audio_paths, _ = await paragraph_to_speech(paragraph, voice, rate, pitch)
if audio_paths:
final_audio_segments.extend(audio_paths)
if not any(isinstance(item, str) for item in final_audio_segments):
return None, None # No actual audio generated
if all(not isinstance(item, str) for item in final_audio_segments):
return None, "Only silence markers found."
combined_audio_path = tempfile.mktemp(suffix=".wav")
with wave.open(combined_audio_path, 'w') as outfile:
first_audio = True
sample_rate = None
num_channels = None
sample_width = None
for segment_path in final_audio_segments:
if isinstance(segment_path, str):
try:
with wave.open(segment_path, 'rb') as infile:
current_num_channels = infile.getnchannels()
current_sample_rate = infile.getframerate()
current_sample_width = infile.getsampwidth()
frames = infile.readframes(infile.getnframes())
if first_audio:
num_channels = current_num_channels
sample_rate = current_sample_rate
sample_width = current_sample_width
outfile.setnchannels(num_channels)
outfile.setframerate(sample_rate)
outfile.setsampwidth(sample_width)
first_audio = False
elif (current_num_channels != num_channels or
current_sample_rate != sample_rate or
current_sample_width != sample_width):
print(f"Warning: Audio segment {segment_path} has different format. Skipping.")
continue
outfile.writeframes(frames)
os.remove(segment_path) # Clean up individual files
except wave.Error as e:
print(f"Warning: Error reading WAV file {segment_path}: {e}")
except FileNotFoundError:
print(f"Warning: Audio file not found: {segment_path}")
return combined_audio_path, None
# Gradio interface function
@spaces.GPU
def tts_interface(text, voice, rate, pitch):
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
return audio, warning
async def get_voices():
voices_list = await edge_tts.list_voices()
voices_dict = {v["ShortName"]: f"{v['Name']} - {v['LocaleName']} ({v['Gender']})" for v in voices_list}
return voices_dict
# Create Gradio application
async def create_demo():
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" # 👈 Pick one of the available voices
description = """
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Yan, 1M:AU_Will, 2M:IT_Guiseppe,3M:US_Brian, 1C: Childvoice, 1O = OldMan
You can insert silence using the marker 'SS' followed by the duration in seconds (e.g., 'SS1.2' for a 1.2-second pause).
Enter your text, select a voice, and adjust the speech rate and pitch.
The application will process your text paragraph by paragraph (separated by two blank lines).
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines. Use 'SS[duration]' for silence."),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph) - WAV Output",
description=description,
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
analytics_enabled=False,
allow_flagging=False
)
return demo
# Run the application
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()