Spaces:
Sleeping
Sleeping
Change to output WAV
Browse files
app.py
CHANGED
@@ -4,41 +4,39 @@ import edge_tts
|
|
4 |
import asyncio
|
5 |
import tempfile
|
6 |
import os
|
7 |
-
import re
|
8 |
import struct
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
silent_data = b'\x00' * (num_frames * num_channels * sample_width)
|
17 |
|
18 |
-
|
19 |
-
with open(
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
with open(temp_mp3_path, 'wb') as f:
|
26 |
-
f.write(b'\xff\xfb\x90\x00\x00\x00\x00') # Minimal MP3 header (very simplified)
|
27 |
-
f.write(silent_data) # Append raw silence
|
28 |
|
29 |
-
|
30 |
-
return temp_mp3_path
|
31 |
-
|
32 |
-
# Text-to-speech function for a single paragraph with SS handling
|
33 |
async def paragraph_to_speech(text, voice, rate, pitch):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
if not text.strip():
|
44 |
return None, [] # Return None for audio path and empty list for silence
|
@@ -51,8 +49,8 @@ async def paragraph_to_speech(text, voice, rate, pitch):
|
|
51 |
if re.match(r'SS\d+\.?\d*', part):
|
52 |
try:
|
53 |
silence_duration = float(part[2:])
|
54 |
-
|
55 |
-
audio_segments.append(
|
56 |
except ValueError:
|
57 |
print(f"Warning: Invalid silence duration format: {part}")
|
58 |
elif part.strip():
|
@@ -61,47 +59,50 @@ async def paragraph_to_speech(text, voice, rate, pitch):
|
|
61 |
current_rate = rate
|
62 |
current_pitch = pitch
|
63 |
|
|
|
64 |
if part.startswith("1F"):
|
65 |
processed_text = part[2:]
|
66 |
-
current_voice = voice1F
|
67 |
elif part.startswith("2F"):
|
68 |
processed_text = part[2:]
|
69 |
-
current_voice = voice2F
|
70 |
elif part.startswith("3F"):
|
71 |
processed_text = part[2:]
|
72 |
-
current_voice = voice3F
|
73 |
elif part.startswith("1M"):
|
74 |
processed_text = part[2:]
|
75 |
-
current_voice = voice1
|
76 |
elif part.startswith("2M"):
|
77 |
processed_text = part[2:]
|
78 |
-
current_voice = voice2
|
79 |
elif part.startswith("3M"):
|
80 |
processed_text = part[2:]
|
81 |
-
current_voice = voice3
|
82 |
elif part.startswith("1C"):
|
83 |
processed_text = part[2:]
|
84 |
-
current_voice = voice4
|
85 |
elif part.startswith("1O"):
|
86 |
processed_text = part[2:]
|
87 |
-
current_voice = voice5
|
88 |
current_pitch = -30
|
89 |
current_rate = -20
|
90 |
else:
|
91 |
-
current_voice = (voice or
|
92 |
-
processed_text=part[:]
|
|
|
93 |
rate_str = f"{current_rate:+d}%"
|
94 |
pitch_str = f"{current_pitch:+d}Hz"
|
95 |
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
|
96 |
-
|
|
|
|
|
97 |
tmp_path = tmp_file.name
|
98 |
await communicate.save(tmp_path)
|
99 |
audio_segments.append(tmp_path)
|
100 |
else:
|
101 |
-
#
|
102 |
-
audio_segments.append(None) # Empty string
|
103 |
|
104 |
-
return audio_segments,
|
105 |
|
106 |
# Main text-to-speech function that processes paragraphs and silence
|
107 |
async def text_to_speech(text, voice, rate, pitch):
|
@@ -110,16 +111,13 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
110 |
if not voice:
|
111 |
return None, gr.Warning("Please select a voice.")
|
112 |
|
113 |
-
paragraphs = [p.strip() for p in re.split(r'
|
114 |
final_audio_segments = []
|
115 |
|
116 |
for paragraph in paragraphs:
|
117 |
-
audio_paths,
|
118 |
if audio_paths:
|
119 |
-
|
120 |
-
final_audio_segments.append(path)
|
121 |
-
if i < len(silence_times):
|
122 |
-
final_audio_segments.append(silence_times[i])
|
123 |
|
124 |
if not any(isinstance(item, str) for item in final_audio_segments):
|
125 |
return None, None # No actual audio generated
|
@@ -127,35 +125,53 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
127 |
if all(not isinstance(item, str) for item in final_audio_segments):
|
128 |
return None, "Only silence markers found."
|
129 |
|
130 |
-
combined_audio_path = tempfile.mktemp(suffix=".
|
131 |
-
with open(combined_audio_path, '
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
try:
|
135 |
-
with open(
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
except FileNotFoundError:
|
139 |
-
print(f"Warning: Audio file not found: {
|
140 |
-
elif isinstance(segment, (int, float)):
|
141 |
-
# Basic silence insertion (approximate)
|
142 |
-
silence = b'\x00' * int(segment * 44100 * 2) # Assuming 16-bit mono at 44.1kHz
|
143 |
-
outfile.write(silence)
|
144 |
|
145 |
return combined_audio_path, None
|
146 |
|
147 |
-
# Gradio interface function
|
148 |
-
|
149 |
-
|
150 |
-
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
|
151 |
-
return audio, warning
|
152 |
-
|
153 |
-
# Create Gradio application
|
154 |
-
import gradio as gr
|
155 |
|
|
|
156 |
async def create_demo():
|
157 |
voices = await get_voices()
|
158 |
-
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
159 |
description = """
|
160 |
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Yan, 1M:AU_Will, 2M:IT_Guiseppe,3M:US_Brian, 1C: Childvoice, 1O = OldMan
|
161 |
You can insert silence using the marker 'SS' followed by the duration in seconds (e.g., 'SS1.2' for a 1.2-second pause).
|
@@ -164,18 +180,18 @@ async def create_demo():
|
|
164 |
"""
|
165 |
|
166 |
demo = gr.Interface(
|
167 |
-
fn=
|
168 |
-
inputs=[
|
169 |
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines. Use 'SS[duration]' for silence."),
|
170 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
|
171 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
172 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
|
173 |
],
|
174 |
-
outputs=[
|
175 |
gr.Audio(label="Generated Audio", type="filepath"),
|
176 |
gr.Markdown(label="Warning", visible=False)
|
177 |
],
|
178 |
-
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph)",
|
179 |
description=description,
|
180 |
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
|
181 |
analytics_enabled=False,
|
@@ -186,4 +202,4 @@ async def create_demo():
|
|
186 |
# Run the application
|
187 |
if __name__ == "__main__":
|
188 |
demo = asyncio.run(create_demo())
|
189 |
-
demo.launch()
|
|
|
4 |
import asyncio
|
5 |
import tempfile
|
6 |
import os
|
7 |
+
import re
|
8 |
import struct
|
9 |
+
import wave
|
10 |
+
|
11 |
+
# Function to create a temporary silent WAV file
|
12 |
+
def create_silent_wav(duration, temp_dir, sample_rate=44100, num_channels=1, sample_width=2):
|
13 |
+
"""Creates a temporary WAV file containing silence."""
|
14 |
+
if duration <= 0:
|
15 |
+
raise ValueError("Duration must be positive.")
|
16 |
+
|
17 |
+
num_frames = int(duration * sample_rate)
|
18 |
silent_data = b'\x00' * (num_frames * num_channels * sample_width)
|
19 |
|
20 |
+
temp_wav_path = os.path.join(temp_dir, f"silent_{duration}.wav")
|
21 |
+
with wave.open(temp_wav_path, 'w') as wf:
|
22 |
+
wf.setnchannels(num_channels)
|
23 |
+
wf.setframerate(sample_rate)
|
24 |
+
wf.setsampwidth(sample_width)
|
25 |
+
wf.writeframes(silent_data)
|
26 |
+
return temp_wav_path
|
|
|
|
|
|
|
27 |
|
28 |
+
# Function to process text and generate audio for a single paragraph
|
|
|
|
|
|
|
29 |
async def paragraph_to_speech(text, voice, rate, pitch):
|
30 |
+
voices = {
|
31 |
+
"voice1F": "en-US-EmmaNeural - en-US (Female)",
|
32 |
+
"voice2F": "en-US-JennyNeural - en-US (Female)",
|
33 |
+
"voice3F": "en-HK-YanNeural - en-HK (Female)",
|
34 |
+
"voice1": "en-AU-WilliamNeural - en-AU (Male)",
|
35 |
+
"voice2": "it-IT-GiuseppeMultilingualNeural - it-IT (Male)",
|
36 |
+
"voice3": "en-US-BrianMultilingualNeural - en-US (Male)",
|
37 |
+
"voice4": "en-GB-MaisieNeural - en-GB (Female)", # Child
|
38 |
+
"voice5": "en-GB-RyanNeural - en-GB (Male)" # Old Man
|
39 |
+
}
|
40 |
|
41 |
if not text.strip():
|
42 |
return None, [] # Return None for audio path and empty list for silence
|
|
|
49 |
if re.match(r'SS\d+\.?\d*', part):
|
50 |
try:
|
51 |
silence_duration = float(part[2:])
|
52 |
+
silent_wav_path = create_silent_wav(silence_duration, temp_dir)
|
53 |
+
audio_segments.append(silent_wav_path)
|
54 |
except ValueError:
|
55 |
print(f"Warning: Invalid silence duration format: {part}")
|
56 |
elif part.strip():
|
|
|
59 |
current_rate = rate
|
60 |
current_pitch = pitch
|
61 |
|
62 |
+
# Select voice based on part prefix
|
63 |
if part.startswith("1F"):
|
64 |
processed_text = part[2:]
|
65 |
+
current_voice = voices["voice1F"]
|
66 |
elif part.startswith("2F"):
|
67 |
processed_text = part[2:]
|
68 |
+
current_voice = voices["voice2F"]
|
69 |
elif part.startswith("3F"):
|
70 |
processed_text = part[2:]
|
71 |
+
current_voice = voices["voice3F"]
|
72 |
elif part.startswith("1M"):
|
73 |
processed_text = part[2:]
|
74 |
+
current_voice = voices["voice1"]
|
75 |
elif part.startswith("2M"):
|
76 |
processed_text = part[2:]
|
77 |
+
current_voice = voices["voice2"]
|
78 |
elif part.startswith("3M"):
|
79 |
processed_text = part[2:]
|
80 |
+
current_voice = voices["voice3"]
|
81 |
elif part.startswith("1C"):
|
82 |
processed_text = part[2:]
|
83 |
+
current_voice = voices["voice4"]
|
84 |
elif part.startswith("1O"):
|
85 |
processed_text = part[2:]
|
86 |
+
current_voice = voices["voice5"]
|
87 |
current_pitch = -30
|
88 |
current_rate = -20
|
89 |
else:
|
90 |
+
current_voice = (voice or voices["voice1"]).split(" - ")[0]
|
91 |
+
processed_text = part[:]
|
92 |
+
|
93 |
rate_str = f"{current_rate:+d}%"
|
94 |
pitch_str = f"{current_pitch:+d}Hz"
|
95 |
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
|
96 |
+
|
97 |
+
# Save speech output to temporary file
|
98 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
99 |
tmp_path = tmp_file.name
|
100 |
await communicate.save(tmp_path)
|
101 |
audio_segments.append(tmp_path)
|
102 |
else:
|
103 |
+
audio_segments.append(None) # Empty string
|
|
|
104 |
|
105 |
+
return audio_segments, [] # Returning empty list for silence times as we are directly creating silent WAV
|
106 |
|
107 |
# Main text-to-speech function that processes paragraphs and silence
|
108 |
async def text_to_speech(text, voice, rate, pitch):
|
|
|
111 |
if not voice:
|
112 |
return None, gr.Warning("Please select a voice.")
|
113 |
|
114 |
+
paragraphs = [p.strip() for p in re.split(r'\n\n+', text) if p.strip()]
|
115 |
final_audio_segments = []
|
116 |
|
117 |
for paragraph in paragraphs:
|
118 |
+
audio_paths, _ = await paragraph_to_speech(paragraph, voice, rate, pitch)
|
119 |
if audio_paths:
|
120 |
+
final_audio_segments.extend(audio_paths)
|
|
|
|
|
|
|
121 |
|
122 |
if not any(isinstance(item, str) for item in final_audio_segments):
|
123 |
return None, None # No actual audio generated
|
|
|
125 |
if all(not isinstance(item, str) for item in final_audio_segments):
|
126 |
return None, "Only silence markers found."
|
127 |
|
128 |
+
combined_audio_path = tempfile.mktemp(suffix=".wav")
|
129 |
+
with wave.open(combined_audio_path, 'w') as outfile:
|
130 |
+
first_audio = True
|
131 |
+
sample_rate = None
|
132 |
+
num_channels = None
|
133 |
+
sample_width = None
|
134 |
+
|
135 |
+
for segment_path in final_audio_segments:
|
136 |
+
if isinstance(segment_path, str):
|
137 |
try:
|
138 |
+
with wave.open(segment_path, 'rb') as infile:
|
139 |
+
current_num_channels = infile.getnchannels()
|
140 |
+
current_sample_rate = infile.getframerate()
|
141 |
+
current_sample_width = infile.getsampwidth()
|
142 |
+
frames = infile.readframes(infile.getnframes())
|
143 |
+
|
144 |
+
if first_audio:
|
145 |
+
num_channels = current_num_channels
|
146 |
+
sample_rate = current_sample_rate
|
147 |
+
sample_width = current_sample_width
|
148 |
+
outfile.setnchannels(num_channels)
|
149 |
+
outfile.setframerate(sample_rate)
|
150 |
+
outfile.setsampwidth(sample_width)
|
151 |
+
first_audio = False
|
152 |
+
elif (current_num_channels != num_channels or
|
153 |
+
current_sample_rate != sample_rate or
|
154 |
+
current_sample_width != sample_width):
|
155 |
+
print(f"Warning: Audio segment {segment_path} has different format. Skipping.")
|
156 |
+
continue
|
157 |
+
|
158 |
+
outfile.writeframes(frames)
|
159 |
+
os.remove(segment_path) # Clean up individual files
|
160 |
+
except wave.Error as e:
|
161 |
+
print(f"Warning: Error reading WAV file {segment_path}: {e}")
|
162 |
except FileNotFoundError:
|
163 |
+
print(f"Warning: Audio file not found: {segment_path}")
|
|
|
|
|
|
|
|
|
164 |
|
165 |
return combined_audio_path, None
|
166 |
|
167 |
+
# Gradio interface function (wrapper to run async code)
|
168 |
+
def tts_interface_sync(text, voice, rate, pitch):
|
169 |
+
return asyncio.run(tts_interface(text, voice, rate, pitch))
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# Gradio interface
|
172 |
async def create_demo():
|
173 |
voices = await get_voices()
|
174 |
+
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
|
175 |
description = """
|
176 |
Default = male, other voices 1F:US_Emma, 2F:US_Jenny, 3F:HK_Yan, 1M:AU_Will, 2M:IT_Guiseppe,3M:US_Brian, 1C: Childvoice, 1O = OldMan
|
177 |
You can insert silence using the marker 'SS' followed by the duration in seconds (e.g., 'SS1.2' for a 1.2-second pause).
|
|
|
180 |
"""
|
181 |
|
182 |
demo = gr.Interface(
|
183 |
+
fn=tts_interface_sync,
|
184 |
+
inputs=[
|
185 |
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines. Use 'SS[duration]' for silence."),
|
186 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=default_voice),
|
187 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
188 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1)
|
189 |
],
|
190 |
+
outputs=[
|
191 |
gr.Audio(label="Generated Audio", type="filepath"),
|
192 |
gr.Markdown(label="Warning", visible=False)
|
193 |
],
|
194 |
+
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph) - WAV Output",
|
195 |
description=description,
|
196 |
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
|
197 |
analytics_enabled=False,
|
|
|
202 |
# Run the application
|
203 |
if __name__ == "__main__":
|
204 |
demo = asyncio.run(create_demo())
|
205 |
+
demo.launch()
|