import spaces import gradio as gr import edge_tts import asyncio import tempfile import os # Get all available voices async def get_voices(): voices = await edge_tts.list_voices() return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices} # Text-to-speech function for a single paragraph async def paragraph_to_speech(text, voice, rate, pitch): voice1 = "en-HK-SamNeural - en-HK (Male)" voice2 = "en-HK-YanNeural - en-HK (Female)" if not text.strip(): return None if text.startswith("FF"): text2 = text[2:] # Remove the first two characters ("FF") voice_short_name =voice2.split(" - ")[0] else: voice_short_name = voice.split(" - ")[0] text2=text rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text2, voice_short_name, rate=rate_str, pitch=pitch_str) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path # Main text-to-speech function that processes paragraphs async def text_to_speech(text, voice, rate, pitch): if not text.strip(): return None, gr.Warning("Please enter text to convert.") if not voice: return None, gr.Warning("Please select a voice.") # Split by two or more newline characters, optionally preceded by carriage returns paragraphs = [p for p in re.split(r'\r?\n\r?\n+', text) if p.strip()] audio_files = [] for paragraph in paragraphs: audio_path = await paragraph_to_speech(paragraph, voice, rate, pitch) if audio_path: audio_files.append(audio_path) if not audio_files: return None, None # No audio generated # Combine audio files if there are multiple paragraphs if len(audio_files) == 1: return audio_files[0], None else: # Simple concatenation for now - consider using a proper audio editing library for smoother transitions combined_audio_path = tempfile.mktemp(suffix=".mp3") with open(combined_audio_path, 'wb') as outfile: for filename in audio_files: with open(filename, 'rb') as infile: outfile.write(infile.read()) os.remove(filename) # Clean up individual files return combined_audio_path, None # Gradio interface function @spaces.GPU def tts_interface(text, voice, rate, pitch): audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch)) return audio, warning # Create Gradio application import gradio as gr async def create_demo(): voices = await get_voices() description = """ Experience the power of Voicecloning.be for text-to-speech conversion. Enter your text, select a voice, and adjust the speech rate and pitch. The application will process your text paragraph by paragraph (separated by two blank lines). """ demo = gr.Interface( fn=tts_interface, inputs=[ gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines."), gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""), gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1), gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1) ], outputs=[ gr.Audio(label="Generated Audio", type="filepath"), gr.Markdown(label="Warning", visible=False) ], title="Voicecloning.be Text-to-Speech (Paragraph by Paragraph)", description=description, article="Process text paragraph by paragraph for smoother output.", analytics_enabled=False, allow_flagging=False ) return demo # Run the application if __name__ == "__main__": demo = asyncio.run(create_demo()) demo.launch()