cnph001's picture
Update app.py
298c01a verified
raw
history blame
10.9 kB
import spaces
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
import re
from pathlib import Path
from pydub import AudioSegment
import librosa
import soundfile as sf
import numpy as np
# Global constant for voice mapping
VOICE_MAP = {
"1F": "en-GB-SoniaNeural",
"2M": "en-GB-RyanNeural",
"3M": "en-US-BrianMultilingualNeural",
"2F": "en-US-JennyNeural",
"1M": "en-AU-WilliamNeural",
"3F": "en-HK-YanNeural",
"4M": "en-GB-ThomasNeural",
"4F": "en-US-EmmaNeural",
"1O": "en-GB-RyanNeural", # Old Man
"1C": "en-GB-MaisieNeural", # Child
"1V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"2V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
"3V": "vi-VN-HoaiMyNeural", # Vietnamese (Female)
"4V": "vi-VN-NamMinhNeural", # Vietnamese (Male)
}
def get_silence(duration_ms=1000):
"""Creates a silent AudioSegment."""
return AudioSegment.silent(
duration=duration_ms,
frame_rate=24000,
sample_width=4,
channels=1
)
async def get_voices():
"""Lists available Edge TTS voices."""
try:
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
except Exception as e:
print(f"Error listing voices: {e}")
return {}
async def generate_audio_with_voice_prefix(text_segment, default_voice, rate, pitch, target_duration_ms=None, speed_adjustment_factor=1.0):
"""Generates audio for a text segment, handling voice prefixes and adjusting rate for duration."""
processed_text = text_segment.strip()
current_voice_short = default_voice.split(" - ")[0] if default_voice else ""
current_rate = rate
current_pitch = pitch
for prefix, voice_short in VOICE_MAP.items():
if processed_text.startswith(prefix):
current_voice_short = voice_short
if prefix in ["1F", "3F", "1V", "3V"]:
current_pitch = 25
elif prefix in ["1O", "4V"]:
current_pitch = -20
current_rate = -10
processed_text = processed_text[len(prefix):].strip()
break
match = re.search(r'([A-Za-z]+)-?(\d+)', processed_text)
if match and match.group(1) in VOICE_MAP:
pitch_adjustment = int(match.group(2))
current_pitch += pitch_adjustment
processed_text = re.sub(r'[A-Za-z]+-?\d+', '', processed_text, count=1).strip()
elif any(processed_text.startswith(prefix) for prefix in VOICE_MAP): # Handle leftover prefixes
processed_text = re.sub(r'^[A-Za-z]{1,2}', '', processed_text).lstrip('-').strip()
if processed_text:
rate_str = f"{current_rate:+d}%"
pitch_str = f"{current_pitch:+d}Hz"
try:
communicate = edge_tts.Communicate(processed_text, current_voice_short, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
audio_path = tmp_file.name
await communicate.save(audio_path)
if target_duration_ms is not None and os.path.exists(audio_path) and target_duration_ms > 0:
audio = AudioSegment.from_mp3(audio_path)
audio_duration_ms = len(audio)
if audio_duration_ms > target_duration_ms:
speed_factor = (audio_duration_ms / target_duration_ms) * speed_adjustment_factor
if speed_factor > 0 and speed_factor >= 1.0:
y, sr = librosa.load(audio_path, sr=None)
y_stretched = librosa.effects.time_stretch(y, rate=speed_factor)
sf.write(audio_path, y_stretched, sr)
return audio_path
except Exception as e:
print(f"Edge TTS error processing '{processed_text}': {e}")
return None
return None
async def process_transcript_line(line, default_voice, rate, pitch, speed_adjustment_factor):
"""Processes a single transcript line with timestamp and potential voice changes."""
match = re.match(r'(\d{2}:\d{2}:\d{2},\d{3})\s+-\s+(\d{2}:\d{2}:\d{2},\d{3})\s+(.*)', line)
if match:
start_time_str, end_time_str, text_parts = match.groups()
def time_str_to_ms(time_str):
h, m, s_ms = time_str.split(':')
s, ms = s_ms.split(',')
return int(h) * 3600000 + int(m) * 60000 + int(s) * 1000 + int(ms)
start_time_ms = time_str_to_ms(start_time_str)
end_time_ms = time_str_to_ms(end_time_str)
duration_ms = end_time_ms - start_time_ms
audio_segments = []
parts = re.split(r'([“”"])', text_parts)
in_quote = False
for part in parts:
if part == '"':
in_quote = not in_quote
continue
if part.strip():
audio_path = await generate_audio_with_voice_prefix(part, default_voice, rate, pitch, duration_ms, speed_adjustment_factor if in_quote else 1.0)
if audio_path:
audio_segments.append(audio_path)
return start_time_ms, audio_segments, duration_ms
return None, None, None
async def transcript_to_speech(transcript_text, voice, rate, pitch, speed_adjustment_factor):
"""Converts a timestamped transcript with voice changes to a single audio file."""
if not transcript_text.strip():
return None, gr.Warning("Please enter transcript text.")
if not voice:
return None, gr.Warning("Please select a voice.")
lines = transcript_text.strip().split('\n')
timed_audio_segments = []
max_end_time_ms = 0
with tempfile.TemporaryDirectory() as tmpdir:
for line in lines:
start_time, audio_paths, duration = await process_transcript_line(line, voice, rate, pitch, speed_adjustment_factor)
if start_time is not None and audio_paths:
combined_line_audio = AudioSegment.empty()
for path in audio_paths:
if path and os.path.exists(path):
try:
audio = AudioSegment.from_mp3(path)
combined_line_audio += audio
except FileNotFoundError:
print(f"Warning: Audio file not found: {path}")
finally:
try:
os.remove(path)
except OSError:
print(f"Warning: Could not remove temporary file: {path}")
if combined_line_audio:
timed_audio_segments.append({'start': start_time, 'audio': combined_line_audio})
max_end_time_ms = max(max_end_time_ms, start_time + len(combined_line_audio))
elif audio_paths:
for path in audio_paths:
if path:
try:
os.remove(path)
except FileNotFoundError:
pass # Clean up even if no timestamp
if not timed_audio_segments:
return None, "No processable audio segments found."
final_audio = AudioSegment.silent(duration=max_end_time_ms, frame_rate=24000)
for segment in timed_audio_segments:
final_audio = final_audio.overlay(segment['audio'], position=segment['start'])
combined_audio_path = Path(tmpdir) / "combined_audio.mp3"
final_audio.export(str(combined_audio_path), format="mp3")
return str(combined_audio_path), None
@spaces.GPU
def tts_interface(transcript, voice, rate, pitch, speed_adjustment_factor):
"""Gradio interface function for TTS."""
audio, warning = asyncio.run(transcript_to_speech(transcript, voice, rate, pitch, speed_adjustment_factor))
return audio, warning
async def create_demo():
"""Creates the Gradio demo interface."""
voices = await get_voices()
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)"
description = """
Process timestamped text (HH:MM:SS,milliseconds - HH:MM:SS,milliseconds) with voice changes within quotes.
The duration specified in the timestamp will be used to adjust the speech rate so the generated audio fits within that time.
You can control the intensity of the speed adjustment using the "Speed Adjustment Factor" slider.
Format: `HH:MM:SS,milliseconds - HH:MM:SS,milliseconds "VoicePrefix Text" more text "AnotherVoicePrefix More Text"`
Example:
```
00:00:00,000 - 00:00:05,000 "This is the default voice." more default. "1F Now a female voice." and back to default.
00:00:05,500 - 00:00:10,250 "1C Yes," said the child, "it is fun!"
```
***************************************************************************************************
1M = en-AU-WilliamNeural - en-AU (Male)
1F = en-GB-SoniaNeural - en-GB (Female)
2M = en-GB-RyanNeural - en-GB (Male)
2F = en-US-JennyNeural - en-US (Female)
3M = en-US-BrianMultilingualNeural - en-US (Male)
3F = en-HK-YanNeural - en-HK (Female)
4M = en-GB-ThomasNeural - en-GB (Male)
4F = en-US-EmmaNeural - en-US (Female)
1O = en-GB-RyanNeural - en-GB (Male) # Old Man
1C = en-GB-MaisieNeural - en-GB (Female) # Child
1V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
2V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
3V = vi-VN-HoaiMyNeural - vi-VN (Female) # Vietnamese (Female)
4V = vi-VN-NamMinhNeural - vi-VN (Male) # Vietnamese (Male)
****************************************************************************************************
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Timestamped Text with Voice Changes and Duration", lines=10, placeholder='00:00:00,000 - 00:00:05,000 "Text" more text "1F Different Voice"'),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Default Voice", value=default_voice),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-50, maximum=50, value=0, label="Pitch Adjustment (Hz)", step=1),
gr.Slider(minimum=0.5, maximum=1.5, value=1.0, step=0.05, label="Speed Adjustment Factor")
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="TTS with Duration-Aware Speed Adjustment and In-Quote Voice Switching",
description=description,
analytics_enabled=False,
allow_flagging=False
)
return demo
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()