Parse text
Browse filesParse input text - recognize paragraph by double ENTER
process each paragraph at a time
app.py
CHANGED
@@ -10,13 +10,10 @@ async def get_voices():
|
|
10 |
voices = await edge_tts.list_voices()
|
11 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
12 |
|
13 |
-
# Text-to-speech function
|
14 |
-
async def
|
15 |
if not text.strip():
|
16 |
-
return None
|
17 |
-
if not voice:
|
18 |
-
return None, gr.Warning("Please select a voice.")
|
19 |
-
|
20 |
voice_short_name = voice.split(" - ")[0]
|
21 |
rate_str = f"{rate:+d}%"
|
22 |
pitch_str = f"{pitch:+d}Hz"
|
@@ -24,7 +21,37 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
24 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
25 |
tmp_path = tmp_file.name
|
26 |
await communicate.save(tmp_path)
|
27 |
-
return tmp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Gradio interface function
|
30 |
@spaces.GPU
|
@@ -37,15 +64,17 @@ import gradio as gr
|
|
37 |
|
38 |
async def create_demo():
|
39 |
voices = await get_voices()
|
40 |
-
|
41 |
description = """
|
42 |
Experience the power of Voicecloning.be for text-to-speech conversion.
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
demo = gr.Interface(
|
46 |
fn=tts_interface,
|
47 |
inputs=[
|
48 |
-
gr.Textbox(label="Input Text", lines=5),
|
49 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
|
50 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
51 |
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
|
@@ -54,9 +83,9 @@ async def create_demo():
|
|
54 |
gr.Audio(label="Generated Audio", type="filepath"),
|
55 |
gr.Markdown(label="Warning", visible=False)
|
56 |
],
|
57 |
-
title="Voicecloning.be Text-to-Speech",
|
58 |
description=description,
|
59 |
-
article="
|
60 |
analytics_enabled=False,
|
61 |
allow_flagging=False
|
62 |
)
|
|
|
10 |
voices = await edge_tts.list_voices()
|
11 |
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
12 |
|
13 |
+
# Text-to-speech function for a single paragraph
|
14 |
+
async def paragraph_to_speech(text, voice, rate, pitch):
|
15 |
if not text.strip():
|
16 |
+
return None
|
|
|
|
|
|
|
17 |
voice_short_name = voice.split(" - ")[0]
|
18 |
rate_str = f"{rate:+d}%"
|
19 |
pitch_str = f"{pitch:+d}Hz"
|
|
|
21 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
22 |
tmp_path = tmp_file.name
|
23 |
await communicate.save(tmp_path)
|
24 |
+
return tmp_path
|
25 |
+
|
26 |
+
# Main text-to-speech function that processes paragraphs
|
27 |
+
async def text_to_speech(text, voice, rate, pitch):
|
28 |
+
if not text.strip():
|
29 |
+
return None, gr.Warning("Please enter text to convert.")
|
30 |
+
if not voice:
|
31 |
+
return None, gr.Warning("Please select a voice.")
|
32 |
+
|
33 |
+
paragraphs = [p for p in text.split("\n\n") if p.strip()]
|
34 |
+
audio_files = []
|
35 |
+
for paragraph in paragraphs:
|
36 |
+
audio_path = await paragraph_to_speech(paragraph, voice, rate, pitch)
|
37 |
+
if audio_path:
|
38 |
+
audio_files.append(audio_path)
|
39 |
+
|
40 |
+
if not audio_files:
|
41 |
+
return None, None # No audio generated
|
42 |
+
|
43 |
+
# Combine audio files if there are multiple paragraphs
|
44 |
+
if len(audio_files) == 1:
|
45 |
+
return audio_files[0], None
|
46 |
+
else:
|
47 |
+
# Simple concatenation for now - consider using a proper audio editing library for smoother transitions
|
48 |
+
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
49 |
+
with open(combined_audio_path, 'wb') as outfile:
|
50 |
+
for filename in audio_files:
|
51 |
+
with open(filename, 'rb') as infile:
|
52 |
+
outfile.write(infile.read())
|
53 |
+
os.remove(filename) # Clean up individual files
|
54 |
+
return combined_audio_path, None
|
55 |
|
56 |
# Gradio interface function
|
57 |
@spaces.GPU
|
|
|
64 |
|
65 |
async def create_demo():
|
66 |
voices = await get_voices()
|
67 |
+
|
68 |
description = """
|
69 |
Experience the power of Voicecloning.be for text-to-speech conversion.
|
70 |
+
Enter your text, select a voice, and adjust the speech rate and pitch.
|
71 |
+
The application will process your text paragraph by paragraph (separated by two blank lines).
|
72 |
"""
|
73 |
+
|
74 |
demo = gr.Interface(
|
75 |
fn=tts_interface,
|
76 |
inputs=[
|
77 |
+
gr.Textbox(label="Input Text", lines=5, placeholder="Separate paragraphs with two blank lines."),
|
78 |
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
|
79 |
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
|
80 |
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
|
|
|
83 |
gr.Audio(label="Generated Audio", type="filepath"),
|
84 |
gr.Markdown(label="Warning", visible=False)
|
85 |
],
|
86 |
+
title="Voicecloning.be Text-to-Speech (Paragraph by Paragraph)",
|
87 |
description=description,
|
88 |
+
article="Process text paragraph by paragraph for smoother output.",
|
89 |
analytics_enabled=False,
|
90 |
allow_flagging=False
|
91 |
)
|