Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,176 +1,89 @@
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
3 |
-
import requests
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
-
|
7 |
-
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
8 |
-
import time
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
def fetch_polymarket_data(search_term="S&P"):
|
15 |
try:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
}
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Parse the first relevant market
|
41 |
-
for market in markets:
|
42 |
-
node = market["node"]
|
43 |
-
outcomes = node["outcomes"]
|
44 |
-
if len(outcomes) >= 2:
|
45 |
-
return {
|
46 |
-
"question": node["question"],
|
47 |
-
"outcomes": {outcome["name"]: float(outcome["price"]) for outcome in outcomes}
|
48 |
-
}
|
49 |
-
return None
|
50 |
-
except Exception as e:
|
51 |
-
return None
|
52 |
-
|
53 |
-
# Function to fetch Yahoo Finance data with retry
|
54 |
-
def fetch_yahoo_data(ticker, retries=3, delay=2):
|
55 |
-
for attempt in range(retries):
|
56 |
-
try:
|
57 |
-
stock = yf.download(ticker, period="1y", auto_adjust=False, progress=False)
|
58 |
-
if stock.empty or len(stock) < 2:
|
59 |
-
return None, None, None, f"No data returned for ticker '{ticker}'. It may be invalid or lack sufficient history."
|
60 |
-
daily_returns = stock["Close"].pct_change().dropna()
|
61 |
-
if daily_returns.empty:
|
62 |
-
return None, None, None, f"No valid returns calculated for ticker '{ticker}'. Insufficient price data."
|
63 |
-
mu = daily_returns.mean() * 252 # Annualized drift
|
64 |
-
sigma = daily_returns.std() * np.sqrt(252) # Annualized volatility
|
65 |
-
last_price = stock["Close"][-1] # Use most recent unadjusted Close
|
66 |
-
return mu, sigma, last_price, None
|
67 |
-
except Exception as e:
|
68 |
-
error_msg = f"Attempt {attempt + 1}/{retries} failed for ticker '{ticker}': {str(e)}"
|
69 |
-
if attempt < retries - 1:
|
70 |
-
time.sleep(delay) # Wait before retrying
|
71 |
-
else:
|
72 |
-
return None, None, None, error_msg
|
73 |
-
return None, None, None, f"Failed to fetch data for '{ticker}' after {retries} attempts."
|
74 |
-
|
75 |
-
# Monte Carlo Simulation with GBM
|
76 |
-
def monte_carlo_simulation(S0, mu, sigma, T, N, sims, risk_factor, pm_data):
|
77 |
-
dt = 1 / 252 # Daily time step
|
78 |
-
steps = int(T * 252)
|
79 |
-
sim_paths = np.zeros((sims, steps + 1))
|
80 |
-
sim_paths[:, 0] = S0
|
81 |
-
|
82 |
-
# Adjust drift based on Polymarket probabilities
|
83 |
-
if pm_data and "outcomes" in pm_data:
|
84 |
-
outcomes = pm_data["outcomes"]
|
85 |
-
bullish_prob = outcomes.get("Yes", 0.5) if "Yes" in outcomes else 0.5
|
86 |
-
bearish_prob = 1 - bullish_prob
|
87 |
-
mu_bull = mu * 1.2 * risk_factor
|
88 |
-
mu_bear = mu * -0.5 * risk_factor
|
89 |
-
mu_adjusted = bullish_prob * mu_bull + bearish_prob * mu_bear
|
90 |
-
else:
|
91 |
-
mu_adjusted = mu * risk_factor
|
92 |
-
|
93 |
-
for t in range(1, steps + 1):
|
94 |
-
Z = np.random.standard_normal(sims)
|
95 |
-
sim_paths[:, t] = sim_paths[:, t-1] * np.exp(
|
96 |
-
(mu_adjusted - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * Z
|
97 |
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
ax.set_xlabel("Final Value ($)")
|
123 |
-
ax.set_ylabel("Frequency")
|
124 |
-
plt.tight_layout()
|
125 |
-
|
126 |
-
# Calculate stats
|
127 |
-
mean_val = np.mean(final_values)
|
128 |
-
min_val = np.min(final_values)
|
129 |
-
max_val = np.max(final_values)
|
130 |
-
std_val = np.std(final_values)
|
131 |
-
|
132 |
-
# Prepare summary text
|
133 |
-
summary = f"Market Data (Yahoo Finance):\n"
|
134 |
-
summary += f"- Drift (μ): {mu:.4f} (based on unadjusted Close)\n"
|
135 |
-
summary += f"- Volatility (σ): {sigma:.4f}\n"
|
136 |
-
summary += f"- Last Close Price: ${S0:.2f}\n\n"
|
137 |
-
if pm_data:
|
138 |
-
summary += f"Polymarket Data:\n- Question: {pm_data['question']}\n"
|
139 |
-
for outcome, prob in pm_data["outcomes"].items():
|
140 |
-
summary += f"- {outcome}: {prob*100:.1f}%\n"
|
141 |
-
else:
|
142 |
-
summary += "Polymarket Data: No relevant market found or API unavailable.\n"
|
143 |
-
summary += f"\nSimulation Results ({num_sims} runs):\n"
|
144 |
-
summary += f"- Mean Final Value: ${mean_val:.2f}\n"
|
145 |
-
summary += f"- Min Final Value: ${min_val:.2f}\n"
|
146 |
-
summary += f"- Max Final Value: ${max_val:.2f}\n"
|
147 |
-
summary += f"- Std Dev: ${std_val:.2f}"
|
148 |
-
|
149 |
-
return fig, summary
|
150 |
-
|
151 |
-
# Gradio UI
|
152 |
-
with gr.Blocks(title="Investment Simulation Platform") as demo:
|
153 |
-
gr.Markdown("# Investment Decision Simulation Platform")
|
154 |
-
gr.Markdown("Simulate investment outcomes using Yahoo Finance data (unadjusted) and Polymarket probabilities.")
|
155 |
-
|
156 |
with gr.Row():
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
inputs=[investment, ticker, horizon, num_sims, risk_factor],
|
172 |
-
outputs=[plot_output, text_output]
|
173 |
)
|
174 |
|
175 |
-
|
176 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import yfinance as yf
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
+
from scipy.optimize import minimize
|
|
|
|
|
6 |
|
7 |
+
# Define stock tickers (25 from S&P 500)
|
8 |
+
TICKERS = [
|
9 |
+
'AAPL', 'MSFT', 'NVDA', 'AVGO', 'ADBE',
|
10 |
+
'AMZN', 'TSLA', 'HD',
|
11 |
+
'PG', 'COST',
|
12 |
+
'UNH', 'JNJ', 'LLY',
|
13 |
+
'JPM', 'GS', 'V',
|
14 |
+
'CAT', 'UNP', 'GE',
|
15 |
+
'XOM', 'NEE',
|
16 |
+
'D',
|
17 |
+
'GOOGL', 'META', 'CMCSA',
|
18 |
+
'PLD'
|
19 |
+
]
|
20 |
|
21 |
+
def optimize_portfolio(years, target_return):
|
|
|
22 |
try:
|
23 |
+
data = yf.download(TICKERS, period=f"{years}y", interval="1mo")['Adj Close']
|
24 |
+
returns = data.pct_change().dropna()
|
25 |
+
mean_returns = returns.mean() * 12
|
26 |
+
cov_matrix = returns.cov() * 12
|
27 |
+
|
28 |
+
num_assets = len(TICKERS)
|
29 |
+
init_weights = np.ones(num_assets) / num_assets
|
30 |
+
|
31 |
+
def portfolio_volatility(weights):
|
32 |
+
return np.sqrt(weights @ cov_matrix @ weights)
|
33 |
+
|
34 |
+
constraints = [
|
35 |
+
{"type": "eq", "fun": lambda w: np.sum(w) - 1},
|
36 |
+
{"type": "eq", "fun": lambda w: w @ mean_returns - target_return}
|
37 |
+
]
|
38 |
+
|
39 |
+
bounds = tuple((0, 1) for _ in range(num_assets))
|
40 |
+
|
41 |
+
result = minimize(
|
42 |
+
portfolio_volatility,
|
43 |
+
init_weights,
|
44 |
+
method="SLSQP",
|
45 |
+
bounds=bounds,
|
46 |
+
constraints=constraints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
+
|
49 |
+
if not result.success:
|
50 |
+
return "Optimization failed. Try adjusting inputs.", None, None, None
|
51 |
+
|
52 |
+
weights = result.x
|
53 |
+
port_return = weights @ mean_returns
|
54 |
+
port_vol = np.sqrt(weights @ cov_matrix @ weights)
|
55 |
+
risk_free_rate = 0.045
|
56 |
+
sharpe_ratio = (port_return - risk_free_rate) / port_vol
|
57 |
+
|
58 |
+
df = pd.DataFrame({
|
59 |
+
"Ticker": TICKERS,
|
60 |
+
"Weight (%)": np.round(weights * 100, 2)
|
61 |
+
}).sort_values("Weight (%)", ascending=False).reset_index(drop=True)
|
62 |
+
|
63 |
+
return df, f"{port_return*100:.2f}%", f"{port_vol*100:.2f}%", f"{sharpe_ratio:.2f}"
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
return f"Error: {str(e)}", None, None, None
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown("# 📈 Modern Portfolio Optimizer (MPT)")
|
70 |
+
gr.Markdown("Select number of years of historical data and your target annual return. This app computes the **minimum risk portfolio** of 25 S&P 500 stocks.")
|
71 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
with gr.Row():
|
73 |
+
years_slider = gr.Slider(1, 10, value=5, step=1, label="Years of Historical Data")
|
74 |
+
return_slider = gr.Slider(1.0, 15.0, value=5.0, step=0.1, label="Target Annual Return (%)")
|
75 |
+
|
76 |
+
run_button = gr.Button("Optimize Portfolio")
|
77 |
+
|
78 |
+
output_table = gr.Dataframe(headers=["Ticker", "Weight (%)"], label="Optimal Allocation")
|
79 |
+
ret_text = gr.Text(label="Expected Return")
|
80 |
+
vol_text = gr.Text(label="Expected Volatility")
|
81 |
+
sharpe_text = gr.Text(label="Sharpe Ratio")
|
82 |
+
|
83 |
+
run_button.click(
|
84 |
+
fn=lambda years, target: optimize_portfolio(years, target / 100),
|
85 |
+
inputs=[years_slider, return_slider],
|
86 |
+
outputs=[output_table, ret_text, vol_text, sharpe_text]
|
|
|
|
|
87 |
)
|
88 |
|
89 |
+
demo.launch()
|
|