File size: 7,592 Bytes
9b90da9
279374e
9b90da9
 
 
 
 
86ea854
9b90da9
 
86ea854
 
 
 
 
9b90da9
 
86ea854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8bcb2
 
 
 
86ea854
 
 
 
 
 
 
 
 
 
 
 
d6f0f11
9b90da9
86ea854
9b90da9
 
4a8bcb2
 
9b90da9
 
 
4a8bcb2
 
 
 
 
86ea854
 
4a8bcb2
 
9b90da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ea854
 
9b90da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ea854
9b90da9
 
 
 
 
 
 
86ea854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b90da9
 
86ea854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b90da9
 
86ea854
9b90da9
 
 
86ea854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b90da9
 
86ea854
9b90da9
86ea854
9b90da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
from google import genai
from google.genai import types
from PIL import Image
from io import BytesIO
import base64
import os
import json

# Initialize the Google Generative AI client with the API key from environment variables
try:
    api_key = os.environ['GEMINI_API_KEY']
except KeyError:
    raise ValueError("Please set the GEMINI_API_KEY environment variable.")
client = genai.Client(api_key=api_key)

def generate_item(tag):
    """
    Generate a single feed item consisting of text from Gemini LLM and an image from Imagen.
    
    Args:
        tag (str): The tag to base the content on.
    
    Returns:
        dict: A dictionary with 'text' (str) and 'image_base64' (str).
    """
    # Generate text using Gemini LLM with JSON output
    prompt = f"""
    Generate a short, engaging TikTok-style caption about {tag}. 
    Return the response as a JSON object with a single key 'caption' containing the caption text.
    Example: {{"caption": "Craving this yummy treat! 😍 #foodie"}}
    Do not include additional commentary or options.
    """
    text_response = client.models.generate_content(
        model='gemini-2.5-flash-preview-04-17',
        contents=[prompt]
    )
    # Parse JSON response to extract the caption
    try:
        response_json = json.loads(text_response.text.strip())
        text = response_json['caption']
    except (json.JSONDecodeError, KeyError):
        text = f"Wow, {tag} is amazing! 😍 #{tag}"  # Fallback caption

    # Generate an image based on the tag, avoiding text
    image_prompt = f"""
    A vivid, high-quality visual scene representing {tag}, designed for a TikTok video. 
    The image should be colorful and engaging, with no text or letters included.
    """
    image_response = client.models.generate_images(
        model='imagen-3.0-generate-002',
        prompt=image_prompt,
        config=types.GenerateImagesConfig(
            number_of_images=1,
            aspect_ratio="9:16",
            person_generation="DONT_ALLOW"
        )
    )

    # Check if images were generated
    if image_response.generated_images and len(image_response.generated_images) > 0:
        generated_image = image_response.generated_images[0]
        image = Image.open(BytesIO(generated_image.image.image_bytes))
    else:
        # Fallback to a placeholder image
        image = Image.new('RGB', (300, 533), color='gray')  # 9:16 aspect ratio

    # Convert the image to base64
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()

    return {'text': text, 'image_base64': img_str}

def start_feed(tag):
    """
    Start a new feed with the given tag by generating one initial item.
    
    Args:
        tag (str): The tag to generate content for.
    
    Returns:
        tuple: (current_tag, feed_items, html_content)
    """
    if not tag.strip():
        tag = "trending"  # Default tag if empty
    item = generate_item(tag)
    feed_items = [item]
    html_content = generate_html(feed_items)
    return tag, feed_items, html_content

def load_more(current_tag, feed_items):
    """
    Append a new item to the existing feed using the current tag.
    
    Args:
        current_tag (str): The tag currently being used for the feed.
        feed_items (list): The current list of feed items.
    
    Returns:
        tuple: (current_tag, updated_feed_items, updated_html_content)
    """
    new_item = generate_item(current_tag)
    feed_items.append(new_item)
    html_content = generate_html(feed_items)
    return current_tag, feed_items, html_content

def generate_html(feed_items):
    """
    Generate an HTML string to display the feed items in a TikTok-like vertical layout.
    
    Args:
        feed_items (list): List of dictionaries containing 'text' and 'image_base64'.
    
    Returns:
        str: HTML string representing the feed.
    """
    html_str = """
    <div style="
        display: flex;
        flex-direction: column;
        align-items: center;
        max-width: 360px;
        margin: 0 auto;
        background-color: #000;
        height: 640px;
        overflow-y: auto;
        scrollbar-width: none;
        -ms-overflow-style: none;
        border: 1px solid #333;
        border-radius: 10px;
    ">
    """
    # Hide scrollbar for a cleaner look
    html_str += """
    <style>
        div::-webkit-scrollbar {
            display: none;
        }
    </style>
    """
    for item in feed_items:
        html_str += f"""
        <div style="
            width: 100%;
            height: 640px;
            position: relative;
            display: flex;
            flex-direction: column;
            justify-content: flex-end;
            overflow: hidden;
        ">
            <img src="data:image/png;base64,{item['image_base64']}" style="
                width: 100%;
                height: 100%;
                object-fit: cover;
                position: absolute;
                top: 0;
                left: 0;
                z-index: 1;
            ">
            <div style="
                position: relative;
                z-index: 2;
                background: linear-gradient(to top, rgba(0,0,0,0.7), transparent);
                padding: 20px;
                color: white;
                font-family: Arial, sans-serif;
                font-size: 18px;
                font-weight: bold;
                text-shadow: 1px 1px 2px rgba(0,0,0,0.5);
            ">
                {item['text']}
            </div>
        </div>
        """
    html_str += "</div>"
    return html_str

# Define the Gradio interface
with gr.Blocks(
    css="""
        body { background-color: #000; color: #fff; font-family: Arial, sans-serif; }
        .gradio-container { max-width: 400px; margin: 0 auto; padding: 10px; }
        input, select, button { border-radius: 5px; background-color: #222; color: #fff; border: 1px solid #444; }
        button { background-color: #ff2d55; border: none; }
        button:hover { background-color: #e0264b; }
        .gr-button { width: 100%; margin-top: 10px; }
        .gr-form { background-color: #111; padding: 15px; border-radius: 10px; }
    """,
    title="TikTok-Style Infinite Feed"
) as demo:
    # Input section
    with gr.Column(elem_classes="gr-form"):
        gr.Markdown("### Create Your TikTok Feed")
        with gr.Row():
            suggested_tags = gr.Dropdown(
                choices=["food", "travel", "fashion", "tech"],
                label="Pick a Tag",
                value="food"
            )
            tag_input = gr.Textbox(
                label="Or Enter a Custom Tag",
                value="food",
                placeholder="e.g., sushi, adventure"
            )
        with gr.Row():
            start_button = gr.Button("Start Feed")
            load_more_button = gr.Button("Load More")

    # Output display
    feed_html = gr.HTML()

    # State variables
    current_tag = gr.State(value="")
    feed_items = gr.State(value=[])

    # Event handlers
    def set_tag(selected_tag):
        """Update the tag input when a suggested tag is selected."""
        return selected_tag

    suggested_tags.change(fn=set_tag, inputs=suggested_tags, outputs=tag_input)
    start_button.click(
        fn=start_feed,
        inputs=tag_input,
        outputs=[current_tag, feed_items, feed_html]
    )
    load_more_button.click(
        fn=load_more,
        inputs=[current_tag, feed_items],
        outputs=[current_tag, feed_items, feed_html]
    )

# Launch the app
demo.launch()