Spaces:
Running
Running
# main.py | |
import os | |
import streamlit as st | |
import anthropic | |
from requests import JSONDecodeError | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from supabase import Client, create_client | |
from streamlit.logger import get_logger | |
from stats import get_usage, add_usage | |
# βββββββ supabase + secrets ββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
supabase_url = st.secrets.SUPABASE_URL | |
supabase_key = st.secrets.SUPABASE_KEY | |
openai_api_key = st.secrets.openai_api_key | |
anthropic_api_key = st.secrets.anthropic_api_key | |
hf_api_key = st.secrets.hf_api_key | |
username = st.secrets.username | |
supabase: Client = create_client(supabase_url, supabase_key) | |
logger = get_logger(__name__) | |
# βββββββ embeddings βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# Switch to local BGE embeddings (no JSONDecode errors, no HTTPβbatch issues) :contentReference[oaicite:0]{index=0} | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name="BAAI/bge-large-en-v1.5", | |
model_kwargs={"device": "cpu"}, | |
encode_kwargs={"normalize_embeddings": True}, | |
) | |
# βββββββ vector store + memory βββββββββββββββββββββββββββββββββββββββββββββββββ | |
vector_store = SupabaseVectorStore( | |
client=supabase, | |
embedding=embeddings, | |
query_name="match_documents", | |
table_name="documents", | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
input_key="question", | |
output_key="answer", | |
return_messages=True, | |
) | |
# βββββββ LLM setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
temperature = 0.1 | |
max_tokens = 500 | |
def response_generator(query: str) -> str: | |
"""Ask the RAG chain to answer `query`, with JSONβerror fallback.""" | |
# log usage | |
add_usage(supabase, "chat", "prompt:" + query, {"model": model, "temperature": temperature}) | |
logger.info("Using HF model %s", model) | |
# prepare HF text-generation LLM | |
hf = HuggingFaceEndpoint( | |
# endpoint_url=f"https://api-inference.huggingface.co/models/{model}", | |
endpoint_url=f"https://router.huggingface.co/hf-inference/models/{model}", | |
task="text-generation", | |
huggingfacehub_api_token=hf_api_key, | |
model_kwargs={ | |
"temperature": temperature, | |
"max_new_tokens": max_tokens, | |
"return_full_text": False, | |
}, | |
) | |
# conversational RAG chain | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=hf, | |
retriever=vector_store.as_retriever( | |
search_kwargs={"score_threshold": 0.6, "k": 4, "filter": {"user": username}} | |
), | |
memory=memory, | |
verbose=True, | |
return_source_documents=True, | |
) | |
try: | |
result = qa({"question": query}) | |
except JSONDecodeError as e: | |
# fallback logging | |
logger.error("Embedding JSONDecodeError: %s", e) | |
return "Sorry, I had trouble understanding the embedded data. Please try again." | |
answer = result.get("answer", "") | |
sources = result.get("source_documents", []) | |
if not sources: | |
return ( | |
"Iβm sorry, I donβt have enough information to answer that. " | |
"If you have a public data source to add, please email [email protected]." | |
) | |
return answer | |
# βββββββ Streamlit UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.set_page_config( | |
page_title="Securade.ai - Safety Copilot", | |
page_icon="https://securade.ai/favicon.ico", | |
layout="centered", | |
initial_sidebar_state="collapsed", | |
menu_items={ | |
"About": "# Securade.ai Safety Copilot v0.1\n[https://securade.ai](https://securade.ai)", | |
"Get Help": "https://securade.ai", | |
"Report a Bug": "mailto:[email protected]", | |
}, | |
) | |
st.title("π·ββοΈ Safety Copilot π¦Ί") | |
stats = get_usage(supabase) | |
st.markdown(f"_{stats} queries answered!_") | |
st.markdown( | |
"Chat with your personal safety assistant about any health & safety related queries. " | |
"[[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)" | |
"|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]" | |
) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
# show history | |
for msg in st.session_state.chat_history: | |
with st.chat_message(msg["role"]): | |
st.markdown(msg["content"]) | |
# new user input | |
if prompt := st.chat_input("Ask a question"): | |
st.session_state.chat_history.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.spinner("Safety briefing in progress..."): | |
answer = response_generator(prompt) | |
with st.chat_message("assistant"): | |
st.markdown(answer) | |
st.session_state.chat_history.append({"role": "assistant", "content": answer}) | |