Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,18 +1,20 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
|
|
|
| 6 |
from langchain_community.vectorstores import SupabaseVectorStore
|
| 7 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
|
|
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
| 10 |
from supabase import Client, create_client
|
| 11 |
from streamlit.logger import get_logger
|
| 12 |
-
|
| 13 |
-
# Configure logging
|
| 14 |
-
logger = get_logger(__name__)
|
| 15 |
-
logging.basicConfig(level=logging.INFO)
|
| 16 |
|
| 17 |
supabase_url = st.secrets.SUPABASE_URL
|
| 18 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
@@ -21,134 +23,59 @@ anthropic_api_key = st.secrets.anthropic_api_key
|
|
| 21 |
hf_api_key = st.secrets.hf_api_key
|
| 22 |
username = st.secrets.username
|
| 23 |
|
| 24 |
-
# Initialize Supabase client
|
| 25 |
supabase: Client = create_client(supabase_url, supabase_key)
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
class CustomHuggingFaceInferenceAPIEmbeddings(HuggingFaceInferenceAPIEmbeddings):
|
| 29 |
-
def embed_query(self, text: str):
|
| 30 |
-
try:
|
| 31 |
-
response = self.client.post(
|
| 32 |
-
json={"inputs": text, "options": {"use_cache": False}},
|
| 33 |
-
task="feature-extraction",
|
| 34 |
-
)
|
| 35 |
-
if response.status_code != 200:
|
| 36 |
-
logger.error(f"API request failed with status {response.status_code}: {response.text}")
|
| 37 |
-
return [0.0] * 384 # Return zero vector of expected dimension
|
| 38 |
-
try:
|
| 39 |
-
embeddings = response.json()
|
| 40 |
-
if not isinstance(embeddings, list) or not embeddings:
|
| 41 |
-
logger.error(f"Invalid embeddings response: {embeddings}")
|
| 42 |
-
return [0.0] * 384
|
| 43 |
-
return embeddings[0]
|
| 44 |
-
except JSONDecodeError as e:
|
| 45 |
-
logger.error(f"JSON decode error: {str(e)}, response: {response.text}")
|
| 46 |
-
return [0.0] * 384
|
| 47 |
-
except Exception as e:
|
| 48 |
-
logger.error(f"Error embedding query: {str(e)}")
|
| 49 |
-
return [0.0] * 384
|
| 50 |
-
|
| 51 |
-
def embed_documents(self, texts):
|
| 52 |
-
try:
|
| 53 |
-
response = self.client.post(
|
| 54 |
-
json={"inputs": texts, "options": {"use_cache": False}},
|
| 55 |
-
task="feature-extraction",
|
| 56 |
-
)
|
| 57 |
-
if response.status_code != 200:
|
| 58 |
-
logger.error(f"API request failed with status {response.status_code}: {response.text}")
|
| 59 |
-
return [[0.0] * 384 for _ in texts]
|
| 60 |
-
try:
|
| 61 |
-
embeddings = response.json()
|
| 62 |
-
if not isinstance(embeddings, list) or not embeddings:
|
| 63 |
-
logger.error(f"Invalid embeddings response: {embeddings}")
|
| 64 |
-
return [[0.0] * 384 for _ in texts]
|
| 65 |
-
return [emb[0] for emb in embeddings]
|
| 66 |
-
except JSONDecodeError as e:
|
| 67 |
-
logger.error(f"JSON decode error: {str(e)}, response: {response.text}")
|
| 68 |
-
return [[0.0] * 384 for _ in texts]
|
| 69 |
-
except Exception as e:
|
| 70 |
-
logger.error(f"Error embedding documents: {str(e)}")
|
| 71 |
-
return [[0.0] * 384 for _ in texts]
|
| 72 |
-
|
| 73 |
-
# Initialize embeddings
|
| 74 |
-
embeddings = CustomHuggingFaceInferenceAPIEmbeddings(
|
| 75 |
api_key=hf_api_key,
|
| 76 |
model_name="BAAI/bge-large-en-v1.5",
|
| 77 |
api_url="https://router.huggingface.co/hf-inference/pipeline/feature-extraction/",
|
| 78 |
)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
st.session_state["chat_history"] = []
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
client=supabase,
|
| 87 |
-
embedding=embeddings,
|
| 88 |
-
query_name="match_documents",
|
| 89 |
-
table_name="documents",
|
| 90 |
-
)
|
| 91 |
-
memory = ConversationBufferMemory(
|
| 92 |
-
memory_key="chat_history",
|
| 93 |
-
input_key="question",
|
| 94 |
-
output_key="answer",
|
| 95 |
-
return_messages=True,
|
| 96 |
-
)
|
| 97 |
|
| 98 |
-
# Model configuration
|
| 99 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
|
|
| 100 |
temperature = 0.1
|
| 101 |
max_tokens = 500
|
| 102 |
-
|
| 103 |
-
# Mock stats function (replace with your actual implementation)
|
| 104 |
-
def get_usage(supabase):
|
| 105 |
-
return 100 # Replace with actual logic
|
| 106 |
-
|
| 107 |
-
def add_usage(supabase, action, prompt, metadata):
|
| 108 |
-
pass # Replace with actual logic
|
| 109 |
-
|
| 110 |
-
stats = str(get_usage(supabase))
|
| 111 |
|
| 112 |
def response_generator(query):
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
return model_response["answer"]
|
| 145 |
-
else:
|
| 146 |
-
return "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."
|
| 147 |
-
except Exception as e:
|
| 148 |
-
logger.error(f"Error generating response: {str(e)}")
|
| 149 |
-
return "An error occurred while processing your request. Please try again later."
|
| 150 |
-
|
| 151 |
-
# Streamlit UI
|
| 152 |
st.set_page_config(
|
| 153 |
page_title="Securade.ai - Safety Copilot",
|
| 154 |
page_icon="https://securade.ai/favicon.ico",
|
|
@@ -156,33 +83,55 @@ st.set_page_config(
|
|
| 156 |
initial_sidebar_state="collapsed",
|
| 157 |
menu_items={
|
| 158 |
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
| 159 |
-
"Get Help": "https://securade.ai",
|
| 160 |
-
"Report a Bug": "mailto:[email protected]"
|
| 161 |
-
}
|
| 162 |
)
|
| 163 |
|
| 164 |
st.title("👷♂️ Safety Copilot 🦺")
|
| 165 |
-
st.markdown(
|
| 166 |
-
"Chat with your personal safety assistant about any health & safety related queries. "
|
| 167 |
-
"[[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)|"
|
| 168 |
-
"[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]"
|
| 169 |
-
)
|
| 170 |
-
st.markdown(f"_{stats} queries answered!_")
|
| 171 |
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
for message in st.session_state.chat_history:
|
| 174 |
with st.chat_message(message["role"]):
|
| 175 |
st.markdown(message["content"])
|
| 176 |
-
|
| 177 |
-
#
|
| 178 |
-
if prompt := st.chat_input("Ask a question"):
|
|
|
|
|
|
|
| 179 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
|
|
|
| 180 |
with st.chat_message("user"):
|
| 181 |
st.markdown(prompt)
|
| 182 |
|
| 183 |
-
with st.spinner(
|
| 184 |
response = response_generator(prompt)
|
| 185 |
|
|
|
|
| 186 |
with st.chat_message("assistant"):
|
| 187 |
st.markdown(response)
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# main.py
|
| 2 |
import os
|
| 3 |
import streamlit as st
|
| 4 |
+
import anthropic
|
| 5 |
+
|
| 6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 7 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 8 |
from langchain_community.vectorstores import SupabaseVectorStore
|
| 9 |
from langchain_community.llms import HuggingFaceEndpoint
|
| 10 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 11 |
+
|
| 12 |
from langchain.chains import ConversationalRetrievalChain
|
| 13 |
from langchain.memory import ConversationBufferMemory
|
| 14 |
+
|
| 15 |
from supabase import Client, create_client
|
| 16 |
from streamlit.logger import get_logger
|
| 17 |
+
from stats import get_usage, add_usage
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
supabase_url = st.secrets.SUPABASE_URL
|
| 20 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
|
|
| 23 |
hf_api_key = st.secrets.hf_api_key
|
| 24 |
username = st.secrets.username
|
| 25 |
|
|
|
|
| 26 |
supabase: Client = create_client(supabase_url, supabase_key)
|
| 27 |
+
logger = get_logger(__name__)
|
| 28 |
|
| 29 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
api_key=hf_api_key,
|
| 31 |
model_name="BAAI/bge-large-en-v1.5",
|
| 32 |
api_url="https://router.huggingface.co/hf-inference/pipeline/feature-extraction/",
|
| 33 |
)
|
| 34 |
|
| 35 |
+
if 'chat_history' not in st.session_state:
|
| 36 |
+
st.session_state['chat_history'] = []
|
|
|
|
| 37 |
|
| 38 |
+
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents")
|
| 39 |
+
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
| 41 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 42 |
+
|
| 43 |
temperature = 0.1
|
| 44 |
max_tokens = 500
|
| 45 |
+
stats = str(get_usage(supabase))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def response_generator(query):
|
| 48 |
+
qa = None
|
| 49 |
+
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature})
|
| 50 |
+
logger.info('Using HF model %s', model)
|
| 51 |
+
# print(st.session_state['max_tokens'])
|
| 52 |
+
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
| 53 |
+
model_kwargs = {"temperature" : temperature,
|
| 54 |
+
"max_new_tokens" : max_tokens,
|
| 55 |
+
# "repetition_penalty" : 1.1,
|
| 56 |
+
"return_full_text" : False}
|
| 57 |
+
hf = HuggingFaceEndpoint(
|
| 58 |
+
endpoint_url=endpoint_url,
|
| 59 |
+
task="text-generation",
|
| 60 |
+
huggingfacehub_api_token=hf_api_key,
|
| 61 |
+
model_kwargs=model_kwargs
|
| 62 |
+
)
|
| 63 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True)
|
| 64 |
+
|
| 65 |
+
# Generate model's response
|
| 66 |
+
model_response = qa({"question": query})
|
| 67 |
+
logger.info('Result: %s', model_response["answer"])
|
| 68 |
+
sources = model_response["source_documents"]
|
| 69 |
+
logger.info('Sources: %s', model_response["source_documents"])
|
| 70 |
+
|
| 71 |
+
if len(sources) > 0:
|
| 72 |
+
response = model_response["answer"]
|
| 73 |
+
else:
|
| 74 |
+
response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."
|
| 75 |
+
|
| 76 |
+
return response
|
| 77 |
+
|
| 78 |
+
# Set the theme
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
st.set_page_config(
|
| 80 |
page_title="Securade.ai - Safety Copilot",
|
| 81 |
page_icon="https://securade.ai/favicon.ico",
|
|
|
|
| 83 |
initial_sidebar_state="collapsed",
|
| 84 |
menu_items={
|
| 85 |
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
| 86 |
+
"Get Help" : "https://securade.ai",
|
| 87 |
+
"Report a Bug": "mailto:[email protected]"
|
| 88 |
+
}
|
| 89 |
)
|
| 90 |
|
| 91 |
st.title("👷♂️ Safety Copilot 🦺")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
st.markdown("Chat with your personal safety assistant about any health & safety related queries. [[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]")
|
| 94 |
+
# st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
|
| 95 |
+
st.markdown("_"+ stats + " queries answered!_")
|
| 96 |
+
|
| 97 |
+
if 'chat_history' not in st.session_state:
|
| 98 |
+
st.session_state['chat_history'] = []
|
| 99 |
+
|
| 100 |
+
# Display chat messages from history on app rerun
|
| 101 |
for message in st.session_state.chat_history:
|
| 102 |
with st.chat_message(message["role"]):
|
| 103 |
st.markdown(message["content"])
|
| 104 |
+
|
| 105 |
+
# Accept user input
|
| 106 |
+
if prompt := st.chat_input("Ask a question"):
|
| 107 |
+
# print(prompt)
|
| 108 |
+
# Add user message to chat history
|
| 109 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
| 110 |
+
# Display user message in chat message container
|
| 111 |
with st.chat_message("user"):
|
| 112 |
st.markdown(prompt)
|
| 113 |
|
| 114 |
+
with st.spinner('Safety briefing in progress...'):
|
| 115 |
response = response_generator(prompt)
|
| 116 |
|
| 117 |
+
# Display assistant response in chat message container
|
| 118 |
with st.chat_message("assistant"):
|
| 119 |
st.markdown(response)
|
| 120 |
+
# Add assistant response to chat history
|
| 121 |
+
# print(response)
|
| 122 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
| 123 |
+
|
| 124 |
+
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
| 125 |
+
# columns = st.columns(2)
|
| 126 |
+
# with columns[0]:
|
| 127 |
+
# button = st.button("Ask")
|
| 128 |
+
# with columns[1]:
|
| 129 |
+
# clear_history = st.button("Clear History", type='secondary')
|
| 130 |
+
|
| 131 |
+
# st.markdown("---\n\n")
|
| 132 |
+
|
| 133 |
+
# if clear_history:
|
| 134 |
+
# # Clear memory in Langchain
|
| 135 |
+
# memory.clear()
|
| 136 |
+
# st.session_state['chat_history'] = []
|
| 137 |
+
# st.experimental_rerun()
|