Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,18 +1,20 @@
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
import
|
4 |
-
|
5 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
|
|
6 |
from langchain_community.vectorstores import SupabaseVectorStore
|
7 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain.memory import ConversationBufferMemory
|
|
|
10 |
from supabase import Client, create_client
|
11 |
from streamlit.logger import get_logger
|
12 |
-
|
13 |
-
# Configure logging
|
14 |
-
logger = get_logger(__name__)
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
supabase_url = st.secrets.SUPABASE_URL
|
18 |
supabase_key = st.secrets.SUPABASE_KEY
|
@@ -21,134 +23,59 @@ anthropic_api_key = st.secrets.anthropic_api_key
|
|
21 |
hf_api_key = st.secrets.hf_api_key
|
22 |
username = st.secrets.username
|
23 |
|
24 |
-
# Initialize Supabase client
|
25 |
supabase: Client = create_client(supabase_url, supabase_key)
|
|
|
26 |
|
27 |
-
|
28 |
-
class CustomHuggingFaceInferenceAPIEmbeddings(HuggingFaceInferenceAPIEmbeddings):
|
29 |
-
def embed_query(self, text: str):
|
30 |
-
try:
|
31 |
-
response = self.client.post(
|
32 |
-
json={"inputs": text, "options": {"use_cache": False}},
|
33 |
-
task="feature-extraction",
|
34 |
-
)
|
35 |
-
if response.status_code != 200:
|
36 |
-
logger.error(f"API request failed with status {response.status_code}: {response.text}")
|
37 |
-
return [0.0] * 384 # Return zero vector of expected dimension
|
38 |
-
try:
|
39 |
-
embeddings = response.json()
|
40 |
-
if not isinstance(embeddings, list) or not embeddings:
|
41 |
-
logger.error(f"Invalid embeddings response: {embeddings}")
|
42 |
-
return [0.0] * 384
|
43 |
-
return embeddings[0]
|
44 |
-
except JSONDecodeError as e:
|
45 |
-
logger.error(f"JSON decode error: {str(e)}, response: {response.text}")
|
46 |
-
return [0.0] * 384
|
47 |
-
except Exception as e:
|
48 |
-
logger.error(f"Error embedding query: {str(e)}")
|
49 |
-
return [0.0] * 384
|
50 |
-
|
51 |
-
def embed_documents(self, texts):
|
52 |
-
try:
|
53 |
-
response = self.client.post(
|
54 |
-
json={"inputs": texts, "options": {"use_cache": False}},
|
55 |
-
task="feature-extraction",
|
56 |
-
)
|
57 |
-
if response.status_code != 200:
|
58 |
-
logger.error(f"API request failed with status {response.status_code}: {response.text}")
|
59 |
-
return [[0.0] * 384 for _ in texts]
|
60 |
-
try:
|
61 |
-
embeddings = response.json()
|
62 |
-
if not isinstance(embeddings, list) or not embeddings:
|
63 |
-
logger.error(f"Invalid embeddings response: {embeddings}")
|
64 |
-
return [[0.0] * 384 for _ in texts]
|
65 |
-
return [emb[0] for emb in embeddings]
|
66 |
-
except JSONDecodeError as e:
|
67 |
-
logger.error(f"JSON decode error: {str(e)}, response: {response.text}")
|
68 |
-
return [[0.0] * 384 for _ in texts]
|
69 |
-
except Exception as e:
|
70 |
-
logger.error(f"Error embedding documents: {str(e)}")
|
71 |
-
return [[0.0] * 384 for _ in texts]
|
72 |
-
|
73 |
-
# Initialize embeddings
|
74 |
-
embeddings = CustomHuggingFaceInferenceAPIEmbeddings(
|
75 |
api_key=hf_api_key,
|
76 |
model_name="BAAI/bge-large-en-v1.5",
|
77 |
api_url="https://router.huggingface.co/hf-inference/pipeline/feature-extraction/",
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
st.session_state["chat_history"] = []
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
client=supabase,
|
87 |
-
embedding=embeddings,
|
88 |
-
query_name="match_documents",
|
89 |
-
table_name="documents",
|
90 |
-
)
|
91 |
-
memory = ConversationBufferMemory(
|
92 |
-
memory_key="chat_history",
|
93 |
-
input_key="question",
|
94 |
-
output_key="answer",
|
95 |
-
return_messages=True,
|
96 |
-
)
|
97 |
|
98 |
-
# Model configuration
|
99 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
|
100 |
temperature = 0.1
|
101 |
max_tokens = 500
|
102 |
-
|
103 |
-
# Mock stats function (replace with your actual implementation)
|
104 |
-
def get_usage(supabase):
|
105 |
-
return 100 # Replace with actual logic
|
106 |
-
|
107 |
-
def add_usage(supabase, action, prompt, metadata):
|
108 |
-
pass # Replace with actual logic
|
109 |
-
|
110 |
-
stats = str(get_usage(supabase))
|
111 |
|
112 |
def response_generator(query):
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
return model_response["answer"]
|
145 |
-
else:
|
146 |
-
return "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."
|
147 |
-
except Exception as e:
|
148 |
-
logger.error(f"Error generating response: {str(e)}")
|
149 |
-
return "An error occurred while processing your request. Please try again later."
|
150 |
-
|
151 |
-
# Streamlit UI
|
152 |
st.set_page_config(
|
153 |
page_title="Securade.ai - Safety Copilot",
|
154 |
page_icon="https://securade.ai/favicon.ico",
|
@@ -156,33 +83,55 @@ st.set_page_config(
|
|
156 |
initial_sidebar_state="collapsed",
|
157 |
menu_items={
|
158 |
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
159 |
-
"Get Help": "https://securade.ai",
|
160 |
-
"Report a Bug": "mailto:[email protected]"
|
161 |
-
}
|
162 |
)
|
163 |
|
164 |
st.title("👷♂️ Safety Copilot 🦺")
|
165 |
-
st.markdown(
|
166 |
-
"Chat with your personal safety assistant about any health & safety related queries. "
|
167 |
-
"[[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)|"
|
168 |
-
"[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]"
|
169 |
-
)
|
170 |
-
st.markdown(f"_{stats} queries answered!_")
|
171 |
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
for message in st.session_state.chat_history:
|
174 |
with st.chat_message(message["role"]):
|
175 |
st.markdown(message["content"])
|
176 |
-
|
177 |
-
#
|
178 |
-
if prompt := st.chat_input("Ask a question"):
|
|
|
|
|
179 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
|
|
180 |
with st.chat_message("user"):
|
181 |
st.markdown(prompt)
|
182 |
|
183 |
-
with st.spinner(
|
184 |
response = response_generator(prompt)
|
185 |
|
|
|
186 |
with st.chat_message("assistant"):
|
187 |
st.markdown(response)
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# main.py
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
+
import anthropic
|
5 |
+
|
6 |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
8 |
from langchain_community.vectorstores import SupabaseVectorStore
|
9 |
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
11 |
+
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
14 |
+
|
15 |
from supabase import Client, create_client
|
16 |
from streamlit.logger import get_logger
|
17 |
+
from stats import get_usage, add_usage
|
|
|
|
|
|
|
18 |
|
19 |
supabase_url = st.secrets.SUPABASE_URL
|
20 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
|
23 |
hf_api_key = st.secrets.hf_api_key
|
24 |
username = st.secrets.username
|
25 |
|
|
|
26 |
supabase: Client = create_client(supabase_url, supabase_key)
|
27 |
+
logger = get_logger(__name__)
|
28 |
|
29 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
api_key=hf_api_key,
|
31 |
model_name="BAAI/bge-large-en-v1.5",
|
32 |
api_url="https://router.huggingface.co/hf-inference/pipeline/feature-extraction/",
|
33 |
)
|
34 |
|
35 |
+
if 'chat_history' not in st.session_state:
|
36 |
+
st.session_state['chat_history'] = []
|
|
|
37 |
|
38 |
+
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents")
|
39 |
+
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
41 |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
42 |
+
|
43 |
temperature = 0.1
|
44 |
max_tokens = 500
|
45 |
+
stats = str(get_usage(supabase))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def response_generator(query):
|
48 |
+
qa = None
|
49 |
+
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature})
|
50 |
+
logger.info('Using HF model %s', model)
|
51 |
+
# print(st.session_state['max_tokens'])
|
52 |
+
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
53 |
+
model_kwargs = {"temperature" : temperature,
|
54 |
+
"max_new_tokens" : max_tokens,
|
55 |
+
# "repetition_penalty" : 1.1,
|
56 |
+
"return_full_text" : False}
|
57 |
+
hf = HuggingFaceEndpoint(
|
58 |
+
endpoint_url=endpoint_url,
|
59 |
+
task="text-generation",
|
60 |
+
huggingfacehub_api_token=hf_api_key,
|
61 |
+
model_kwargs=model_kwargs
|
62 |
+
)
|
63 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True)
|
64 |
+
|
65 |
+
# Generate model's response
|
66 |
+
model_response = qa({"question": query})
|
67 |
+
logger.info('Result: %s', model_response["answer"])
|
68 |
+
sources = model_response["source_documents"]
|
69 |
+
logger.info('Sources: %s', model_response["source_documents"])
|
70 |
+
|
71 |
+
if len(sources) > 0:
|
72 |
+
response = model_response["answer"]
|
73 |
+
else:
|
74 |
+
response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."
|
75 |
+
|
76 |
+
return response
|
77 |
+
|
78 |
+
# Set the theme
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
st.set_page_config(
|
80 |
page_title="Securade.ai - Safety Copilot",
|
81 |
page_icon="https://securade.ai/favicon.ico",
|
|
|
83 |
initial_sidebar_state="collapsed",
|
84 |
menu_items={
|
85 |
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
86 |
+
"Get Help" : "https://securade.ai",
|
87 |
+
"Report a Bug": "mailto:[email protected]"
|
88 |
+
}
|
89 |
)
|
90 |
|
91 |
st.title("👷♂️ Safety Copilot 🦺")
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
st.markdown("Chat with your personal safety assistant about any health & safety related queries. [[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]")
|
94 |
+
# st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
|
95 |
+
st.markdown("_"+ stats + " queries answered!_")
|
96 |
+
|
97 |
+
if 'chat_history' not in st.session_state:
|
98 |
+
st.session_state['chat_history'] = []
|
99 |
+
|
100 |
+
# Display chat messages from history on app rerun
|
101 |
for message in st.session_state.chat_history:
|
102 |
with st.chat_message(message["role"]):
|
103 |
st.markdown(message["content"])
|
104 |
+
|
105 |
+
# Accept user input
|
106 |
+
if prompt := st.chat_input("Ask a question"):
|
107 |
+
# print(prompt)
|
108 |
+
# Add user message to chat history
|
109 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
110 |
+
# Display user message in chat message container
|
111 |
with st.chat_message("user"):
|
112 |
st.markdown(prompt)
|
113 |
|
114 |
+
with st.spinner('Safety briefing in progress...'):
|
115 |
response = response_generator(prompt)
|
116 |
|
117 |
+
# Display assistant response in chat message container
|
118 |
with st.chat_message("assistant"):
|
119 |
st.markdown(response)
|
120 |
+
# Add assistant response to chat history
|
121 |
+
# print(response)
|
122 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
123 |
+
|
124 |
+
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
125 |
+
# columns = st.columns(2)
|
126 |
+
# with columns[0]:
|
127 |
+
# button = st.button("Ask")
|
128 |
+
# with columns[1]:
|
129 |
+
# clear_history = st.button("Clear History", type='secondary')
|
130 |
+
|
131 |
+
# st.markdown("---\n\n")
|
132 |
+
|
133 |
+
# if clear_history:
|
134 |
+
# # Clear memory in Langchain
|
135 |
+
# memory.clear()
|
136 |
+
# st.session_state['chat_history'] = []
|
137 |
+
# st.experimental_rerun()
|