File size: 16,001 Bytes
e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import math
from io import BytesIO
import base64
# Constants
BOARD_SIZE = 9
CELL_SIZE = 50
PIECE_RADIUS = 20
EMPTY = 0
WHITE_SOLDIER = 1
BLACK_SOLDIER = 2
KING = 3
CASTLE = (4, 4) # Center of the 9x9 board (0-based indices)
CAMPS = [
(0,3), (0,4), (0,5), (1,4), # Top camp
(8,3), (8,4), (8,5), (7,4), # Bottom camp
(3,0), (4,0), (5,0), (4,1), # Left camp
(3,8), (4,8), (5,8), (4,7) # Right camp
]
ESCAPES = [(i,j) for i in [0,8] for j in range(BOARD_SIZE)] + [(i,j) for j in [0,8] for i in range(BOARD_SIZE) if (i,j) not in CAMPS]
COLORS = {
'empty': '#FFFFFF', # White for regular empty cells
'castle': '#808080', # Gray for castle
'camp': '#A0522D', # Brown for camps
'escape': '#00FF00', # Green for escape tiles
'white': '#FFFFFF', # White for white soldiers
'black': '#000000', # Black for black soldiers
'king': '#FFD700', # Gold for king
'highlight': '#FFFF00' # Yellow for selected cell
}
# Game state class
class TablutState:
def __init__(self):
self.board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int)
self.turn = 'WHITE'
self.black_in_camps = set(CAMPS) # Track black pieces in camps
self.setup_initial_position()
self.move_history = [] # To detect draws
def setup_initial_position(self):
self.board[4, 4] = KING
white_positions = [(3,4), (4,3), (4,5), (5,4), (2,4), (4,2), (4,6), (6,4)]
for pos in white_positions:
self.board[pos] = WHITE_SOLDIER
for pos in CAMPS:
self.board[pos] = BLACK_SOLDIER
def copy(self):
new_state = TablutState()
new_state.board = self.board.copy()
new_state.turn = self.turn
new_state.black_in_camps = self.black_in_camps.copy()
new_state.move_history = self.move_history.copy()
return new_state
# Utility functions
def pos_to_coord(pos):
"""Convert (row, col) to board coordinate (e.g., (4,4) -> 'E5')."""
row, col = pos
return f"{chr(ord('A') + col)}{row + 1}"
def coord_to_pos(coord):
"""Convert board coordinate (e.g., 'E5') to (row, col)."""
col = ord(coord[0].upper()) - ord('A')
row = int(coord[1]) - 1
return (row, col)
def is_adjacent_to_castle(pos):
x, y = pos
cx, cy = CASTLE
return (abs(x - cx) == 1 and y == cy) or (abs(y - cy) == 1 and x == cx)
def get_friendly_pieces(turn):
return [WHITE_SOLDIER, KING] if turn == 'WHITE' else [BLACK_SOLDIER]
def manhattan_distance(pos1, pos2):
return abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1])
# Game logic functions
def is_valid_move(state, from_pos, to_pos):
if from_pos == to_pos:
return False
piece = state.board[from_pos]
if state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]:
return False
if state.turn == 'BLACK' and piece != BLACK_SOLDIER:
return False
if state.board[to_pos] != EMPTY:
return False
from_row, from_col = from_pos
to_row, to_col = to_pos
if from_row != to_row and from_col != to_col:
return False
# Path must be clear
if from_row == to_row:
step = 1 if to_col > from_col else -1
for col in range(from_col + step, to_col, step):
if state.board[from_row, col] != EMPTY:
return False
else:
step = 1 if to_row > from_row else -1
for row in range(from_row + step, to_row, step):
if state.board[row, from_col] != EMPTY:
return False
# Castle is only for the king
if to_pos == CASTLE and piece != KING:
return False
# Camp restrictions
if to_pos in CAMPS:
if state.turn == 'WHITE' or (state.turn == 'BLACK' and from_pos not in state.black_in_camps):
return False
return True
def get_legal_moves(state, from_pos):
piece = state.board[from_pos]
if not piece or (state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]) or \
(state.turn == 'BLACK' and piece != BLACK_SOLDIER):
return []
row, col = from_pos
moves = []
for r in range(BOARD_SIZE):
if r != row:
to_pos = (r, col)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
for c in range(BOARD_SIZE):
if c != col:
to_pos = (row, c)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
return moves
def is_soldier_captured(state, pos, friendly):
x, y = pos
friendly_pieces = get_friendly_pieces(friendly)
# Standard capture
if y > 0 and y < BOARD_SIZE - 1:
if state.board[x, y-1] in friendly_pieces and state.board[x, y+1] in friendly_pieces:
return True
if x > 0 and x < BOARD_SIZE - 1:
if state.board[x-1, y] in friendly_pieces and state.board[x+1, y] in friendly_pieces:
return True
# Capture against castle or camp
if is_adjacent_to_castle(pos):
cx, cy = CASTLE
if x == cx:
if y < cy and y > 0 and state.board[x, y-1] in friendly_pieces:
return True
elif y > cy and y < BOARD_SIZE - 1 and state.board[x, y+1] in friendly_pieces:
return True
elif y == cy:
if x < cx and x > 0 and state.board[x-1, y] in friendly_pieces:
return True
elif x > cx and x < BOARD_SIZE - 1 and state.board[x+1, y] in friendly_pieces:
return True
if pos in CAMPS:
return False # Cannot capture pieces in camps
for camp in CAMPS:
if pos == (camp[0] + 1, camp[1]) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0] - 1, camp[1]) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0], camp[1] + 1) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
elif pos == (camp[0], camp[1] - 1) and state.board[camp] in friendly_pieces + [EMPTY]:
return False
return False
def is_king_captured(state, pos):
x, y = pos
if pos == CASTLE:
return all(state.board[x + dx, y + dy] == BLACK_SOLDIER for dx, dy in [(-1,0), (1,0), (0,-1), (0,1)]
if 0 <= x + dx < BOARD_SIZE and 0 <= y + dy < BOARD_SIZE)
elif is_adjacent_to_castle(pos):
cx, cy = CASTLE
dx = cx - x
dy = cy - y
free_directions = [d for d in [(-1,0), (1,0), (0,-1), (0,1)] if d != (dx, dy)]
return all(state.board[x + d[0], y + d[1]] == BLACK_SOLDIER for d in free_directions
if 0 <= x + d[0] < BOARD_SIZE and 0 <= y + d[1] < BOARD_SIZE)
else:
return is_soldier_captured(state, pos, 'BLACK')
def apply_move(state, from_pos, to_pos):
new_state = state.copy()
piece = new_state.board[from_pos]
new_state.board[to_pos] = piece
new_state.board[from_pos] = EMPTY
if new_state.turn == 'BLACK' and from_pos in new_state.black_in_camps and to_pos not in CAMPS:
new_state.black_in_camps.discard(from_pos)
# Apply captures
captures = []
opponent = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if new_state.board[x, y] == (WHITE_SOLDIER if opponent == 'WHITE' else BLACK_SOLDIER):
if is_soldier_captured(new_state, (x, y), new_state.turn):
captures.append((x, y))
if opponent == 'WHITE':
king_pos = find_king_position(new_state)
if king_pos and is_king_captured(new_state, king_pos):
captures.append(king_pos)
for pos in captures:
new_state.board[pos] = EMPTY
new_state.turn = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
# Update move history for draw detection
board_tuple = tuple(new_state.board.flatten())
new_state.move_history.append(board_tuple)
return new_state
def find_king_position(state):
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if state.board[x, y] == KING:
return (x, y)
return None
def check_game_status(state):
king_pos = find_king_position(state)
if king_pos is None:
return "BLACK WINS"
if king_pos in ESCAPES:
return "WHITE WINS"
# Check for no legal moves
pieces = []
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if (state.turn == 'WHITE' and state.board[x, y] in [WHITE_SOLDIER, KING]) or \
(state.turn == 'BLACK' and state.board[x, y] == BLACK_SOLDIER):
pieces.append((x, y))
has_moves = False
for pos in pieces:
if get_legal_moves(state, pos):
has_moves = True
break
if not has_moves:
return "BLACK WINS" if state.turn == 'WHITE' else "WHITE WINS"
# Check for draw (same state twice)
board_tuple = tuple(state.board.flatten())
if state.move_history.count(board_tuple) >= 2:
return "DRAW"
return "CONTINUE"
# AI implementation
def evaluate_state(state):
status = check_game_status(state)
if status == "WHITE WINS":
return 1000
elif status == "BLACK WINS":
return -1000
elif status == "DRAW":
return 0
king_pos = find_king_position(state)
if not king_pos:
return -1000
# Heuristic: distance from king to nearest escape
min_escape_dist = min(manhattan_distance(king_pos, e) for e in ESCAPES)
white_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == WHITE_SOLDIER)
black_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER)
# Encourage Black to surround king, White to escape
if state.turn == 'WHITE':
return -min_escape_dist * 10 + white_pieces * 5 - black_pieces * 3
else:
return min_escape_dist * 10 - white_pieces * 3 + black_pieces * 5
def minimax(state, depth, alpha, beta, maximizing_player):
if depth == 0 or check_game_status(state) != "CONTINUE":
return evaluate_state(state), None
if maximizing_player:
max_eval = -math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, False)
if eval_score > max_eval:
max_eval = eval_score
best_move = (from_pos, to_pos)
alpha = max(alpha, eval_score)
if beta <= alpha:
break
return max_eval, best_move
else:
min_eval = math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] in [WHITE_SOLDIER, KING]]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, True)
if eval_score < min_eval:
min_eval = eval_score
best_move = (from_pos, to_pos)
beta = min(beta, eval_score)
if beta <= alpha:
break
return min_eval, best_move
def ai_move(state):
if state.turn != 'BLACK':
return state, "Not AI's turn", None
depth = 3 # Adjustable for performance
_, move = minimax(state, depth, -math.inf, math.inf, True)
if move:
from_pos, to_pos = move
new_state = apply_move(state, from_pos, to_pos)
return new_state, f"AI moved from {pos_to_coord(from_pos)} to {pos_to_coord(to_pos)}", None
return state, "AI has no moves", None
# SVG board generation
def generate_board_svg(state, selected_pos=None):
width = BOARD_SIZE * CELL_SIZE
height = BOARD_SIZE * CELL_SIZE
svg = [f'<svg width="{width}" height="{height}" xmlns="http://www.w3.org/2000/svg">']
# Draw cells
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
pos = (x, y)
fill = COLORS['empty']
if pos == CASTLE:
fill = COLORS['castle']
elif pos in CAMPS:
fill = COLORS['camp']
elif pos in ESCAPES:
fill = COLORS['escape']
if pos == selected_pos:
fill = COLORS['highlight']
svg.append(f'<rect x="{y * CELL_SIZE}" y="{x * CELL_SIZE}" width="{CELL_SIZE}" height="{CELL_SIZE}" fill="{fill}" stroke="black" stroke-width="1"/>')
# Draw pieces
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
piece = state.board[x, y]
if piece != EMPTY:
cx = y * CELL_SIZE + CELL_SIZE // 2
cy = x * CELL_SIZE + CELL_SIZE // 2
color = COLORS['white'] if piece == WHITE_SOLDIER else COLORS['black'] if piece == BLACK_SOLDIER else COLORS['king']
svg.append(f'<circle cx="{cx}" cy="{cy}" r="{PIECE_RADIUS}" fill="{color}" stroke="black" stroke-width="1"/>')
# Draw grid labels
for i in range(BOARD_SIZE):
svg.append(f'<text x="5" y="{i * CELL_SIZE + CELL_SIZE // 2 + 5}" fill="black">{BOARD_SIZE - i}</text>')
svg.append(f'<text x="{i * CELL_SIZE + CELL_SIZE // 2 - 5}" y="{height - 10}" fill="black">{chr(ord("A") + i)}</text>')
svg.append('</svg>')
return ''.join(svg)
def svg_to_image(svg_content):
img = Image.new('RGB', (BOARD_SIZE * CELL_SIZE, BOARD_SIZE * CELL_SIZE), color='white')
# For Gradio, we encode SVG as base64 to display in HTML
svg_bytes = svg_content.encode('utf-8')
svg_base64 = base64.b64encode(svg_bytes).decode('utf-8')
return svg_base64
# Gradio interface functions
def click_board(state, selected_pos, evt: gr.SelectData):
if state.turn != 'WHITE':
return state, "It's the AI's turn", None, selected_pos
x = evt.index[1] // CELL_SIZE
y = evt.index[0] // CELL_SIZE
pos = (x, y)
if selected_pos is None:
# Select a piece
if state.board[pos] in [WHITE_SOLDIER, KING]:
return state, f"Selected {pos_to_coord(pos)}", None, pos
else:
return state, "Select a White piece or King", None, None
else:
# Try to move
if is_valid_move(state, selected_pos, pos):
new_state = apply_move(state, selected_pos, pos)
status = check_game_status(new_state)
if status != "CONTINUE":
return new_state, status, None, None
# Trigger AI move
ai_state, ai_message, _ = ai_move(new_state)
final_status = check_game_status(ai_state)
return ai_state, f"Your move to {pos_to_coord(pos)}. {ai_message}. {final_status if final_status != 'CONTINUE' else ''}", None, None
else:
return state, "Invalid move", None, None
def new_game():
state = TablutState()
return state, "New game started. Your turn (White).", generate_board_svg(state), None
# Gradio interface
with gr.Blocks(title="Tablut Game") as demo:
state = gr.State()
selected_pos = gr.State(value=None)
board_html = gr.HTML(label="Board")
message_label = gr.Label(label="Message")
new_game_button = gr.Button("New Game")
board_html.select(fn=click_board, inputs=[state, selected_pos], outputs=[state, message_label, board_html, selected_pos])
new_game_button.click(fn=new_game, outputs=[state, message_label, board_html, selected_pos])
demo.load(fn=new_game, outputs=[state, message_label, board_html, selected_pos])
# Note: demo.launch() is not needed for HF Spaces |