videoanalysis / app.py
codelion's picture
Update app.py
63595a8 verified
raw
history blame
6.04 kB
import os
import json
import gradio as gr
import cv2
from google import genai
from google.genai.types import Part
from tenacity import retry, stop_after_attempt, wait_random_exponential
# Retrieve API key from environment variables.
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
# Initialize the Gemini API client via AI Studio using the API key.
client = genai.Client(api_key=GOOGLE_API_KEY)
# Use the Gemini 2.0 Flash model.
MODEL_NAME = "gemini-2.0-flash-001"
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
def call_gemini(video_file: str, prompt: str) -> str:
"""
Call the Gemini model with the provided video file and prompt.
The video file is read as bytes and passed with MIME type "video/mp4".
The prompt is passed as a plain string.
"""
with open(video_file, "rb") as f:
file_bytes = f.read()
response = client.models.generate_content(
model=MODEL_NAME,
contents=[
Part(file_data=file_bytes, mime_type="video/mp4"),
prompt
]
)
return response.text
def hhmmss_to_seconds(time_str: str) -> float:
"""
Convert a HH:MM:SS formatted string into seconds.
"""
parts = time_str.strip().split(":")
parts = [float(p) for p in parts]
if len(parts) == 3:
return parts[0] * 3600 + parts[1] * 60 + parts[2]
elif len(parts) == 2:
return parts[0] * 60 + parts[1]
else:
return parts[0]
def get_key_frames(video_file: str, summary: str, user_query: str) -> list:
"""
Ask Gemini to output key timestamps and descriptions in plain text.
The prompt instructs the model to output one line per event in the format:
HH:MM:SS - description
We then parse these lines and extract frames using OpenCV.
Returns a list of tuples: (image_array, caption)
"""
prompt = (
"List the key timestamps in the video and a brief description of the important event at that time. "
"Output one line per event in the following format: HH:MM:SS - description. Do not include any extra text."
)
prompt += f" Video Summary: {summary}"
if user_query:
prompt += f" Focus on: {user_query}"
try:
key_frames_response = call_gemini(video_file, prompt)
lines = key_frames_response.strip().split("\n")
key_frames = []
for line in lines:
if " - " in line:
parts = line.split(" - ", 1)
timestamp = parts[0].strip()
description = parts[1].strip()
key_frames.append({"timestamp": timestamp, "description": description})
except Exception as e:
print("Error in key frame extraction:", e)
key_frames = []
extracted_frames = []
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
print("Error: Could not open the uploaded video file.")
return extracted_frames
for frame_obj in key_frames:
ts = frame_obj.get("timestamp")
description = frame_obj.get("description", "")
try:
seconds = hhmmss_to_seconds(ts)
except Exception:
continue
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
caption = f"{ts}: {description}"
extracted_frames.append((frame_rgb, caption))
cap.release()
return extracted_frames
def analyze_video(video_file: str, user_query: str) -> (str, list):
"""
Perform a single-step video analysis on the uploaded file.
First, call Gemini to get a brief summary of the video.
Then, ask Gemini for key timestamps and descriptions.
Returns:
- A Markdown report as a string.
- A gallery list of key frames (each as a tuple of (image, caption)).
"""
summary_prompt = "Summarize this video in a few sentences, focusing on any security or surveillance insights."
if user_query:
summary_prompt += f" Also focus on: {user_query}"
try:
summary = call_gemini(video_file, summary_prompt)
except Exception as e:
summary = f"[Error in summary extraction: {e}]"
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{summary}\n"
key_frames_gallery = get_key_frames(video_file, summary, user_query)
if not key_frames_gallery:
markdown_report += "\n*No key frames were extracted.*\n"
else:
markdown_report += "\n**Key Frames Extracted:**\n"
for idx, (img, caption) in enumerate(key_frames_gallery, start=1):
markdown_report += f"- **Frame {idx}:** {caption}\n"
return markdown_report, key_frames_gallery
def gradio_interface(video_file, user_query: str) -> (str, list):
"""
Gradio interface function that accepts an uploaded video file and an optional query,
then returns a Markdown report and a gallery of extracted key frames with captions.
"""
if not video_file:
return "Please upload a valid video file.", []
return analyze_video(video_file, user_query)
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Video(label="Upload Video File"),
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
],
outputs=[
gr.Markdown(label="Security & Surveillance Analysis Report"),
gr.Gallery(label="Extracted Key Frames", columns=2)
],
title="AI Video Analysis and Summariser Agent",
description=(
"This tool uses Google's Gemini 2.0 Flash model via AI Studio to analyze an uploaded video. "
"It returns a brief summary and extracts key frames based on that summary. "
"Provide a video file and, optionally, a query to guide the analysis."
)
)
if __name__ == "__main__":
iface.launch()