Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,198 +1,111 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import cv2
|
4 |
from google import genai
|
5 |
-
from google.genai
|
6 |
-
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
7 |
|
8 |
# Retrieve API key from environment variables
|
9 |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
10 |
if not GOOGLE_API_KEY:
|
11 |
-
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
|
12 |
|
13 |
# Initialize the Gemini API client
|
14 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
|
|
15 |
|
16 |
-
|
17 |
-
MODEL_NAME = "gemini-2.0-flash"
|
18 |
-
|
19 |
-
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
20 |
-
def call_gemini(video_file: str, prompt: str) -> str:
|
21 |
-
"""
|
22 |
-
Call the Gemini model with a video file and prompt.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
video_file (str): Path to the video file
|
26 |
-
prompt (str): Text prompt to guide the analysis
|
27 |
-
|
28 |
-
Returns:
|
29 |
-
str: Response text from the Gemini API
|
30 |
-
"""
|
31 |
-
with open(video_file, "rb") as f:
|
32 |
-
file_bytes = f.read()
|
33 |
-
response = client.models.generate_content(
|
34 |
-
model=MODEL_NAME,
|
35 |
-
contents=[
|
36 |
-
Part(file_data=file_bytes, mime_type="video/mp4"),
|
37 |
-
Part(text=prompt)
|
38 |
-
]
|
39 |
-
)
|
40 |
-
return response.text
|
41 |
-
|
42 |
-
def safe_call_gemini(video_file: str, prompt: str) -> str:
|
43 |
"""
|
44 |
-
|
45 |
|
46 |
Args:
|
47 |
video_file (str): Path to the video file
|
48 |
-
prompt (str): Text prompt for the API
|
49 |
|
50 |
Returns:
|
51 |
-
|
52 |
"""
|
53 |
try:
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
except Exception as e:
|
56 |
-
|
57 |
-
print(error_msg)
|
58 |
-
return error_msg
|
59 |
-
|
60 |
-
def hhmmss_to_seconds(time_str: str) -> float:
|
61 |
-
"""
|
62 |
-
Convert a HH:MM:SS formatted string into seconds.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
time_str (str): Time string in HH:MM:SS format
|
66 |
-
|
67 |
-
Returns:
|
68 |
-
float: Time in seconds
|
69 |
-
"""
|
70 |
-
parts = time_str.strip().split(":")
|
71 |
-
parts = [float(p) for p in parts]
|
72 |
-
if len(parts) == 3:
|
73 |
-
return parts[0] * 3600 + parts[1] * 60 + parts[2]
|
74 |
-
elif len(parts) == 2:
|
75 |
-
return parts[0] * 60 + parts[1]
|
76 |
-
else:
|
77 |
-
return parts[0]
|
78 |
-
|
79 |
-
def get_key_frames(video_file: str, summary: str, user_query: str) -> list:
|
80 |
-
"""
|
81 |
-
Extract key frames from the video based on timestamps provided by Gemini.
|
82 |
-
|
83 |
-
Args:
|
84 |
-
video_file (str): Path to the video file
|
85 |
-
summary (str): Video summary to provide context
|
86 |
-
user_query (str): Optional user query to focus the analysis
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
list: List of tuples (image_array, caption)
|
90 |
-
"""
|
91 |
-
prompt = (
|
92 |
-
"List the key timestamps in the video and a brief description of the event at that time. "
|
93 |
-
"Output one line per event in the format: HH:MM:SS - description. Do not include any extra text."
|
94 |
-
)
|
95 |
-
prompt += f" Video Summary: {summary}"
|
96 |
-
if user_query:
|
97 |
-
prompt += f" Focus on: {user_query}"
|
98 |
-
|
99 |
-
key_frames_response = safe_call_gemini(video_file, prompt)
|
100 |
-
if "Gemini call failed" in key_frames_response:
|
101 |
-
return []
|
102 |
-
|
103 |
-
lines = key_frames_response.strip().split("\n")
|
104 |
-
key_frames = []
|
105 |
-
for line in lines:
|
106 |
-
if " - " in line:
|
107 |
-
parts = line.split(" - ", 1)
|
108 |
-
timestamp = parts[0].strip()
|
109 |
-
description = parts[1].strip()
|
110 |
-
key_frames.append({"timestamp": timestamp, "description": description})
|
111 |
-
|
112 |
-
extracted_frames = []
|
113 |
-
cap = cv2.VideoCapture(video_file)
|
114 |
-
if not cap.isOpened():
|
115 |
-
print("Error: Could not open the uploaded video file.")
|
116 |
-
return extracted_frames
|
117 |
|
118 |
-
|
119 |
-
ts = frame_obj.get("timestamp")
|
120 |
-
description = frame_obj.get("description", "")
|
121 |
-
try:
|
122 |
-
seconds = hhmmss_to_seconds(ts)
|
123 |
-
except Exception:
|
124 |
-
continue
|
125 |
-
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
126 |
-
ret, frame = cap.read()
|
127 |
-
if ret:
|
128 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
129 |
-
caption = f"{ts}: {description}"
|
130 |
-
extracted_frames.append((frame_rgb, caption))
|
131 |
-
cap.release()
|
132 |
-
return extracted_frames
|
133 |
-
|
134 |
-
def analyze_video(video_file: str, user_query: str) -> (str, list):
|
135 |
"""
|
136 |
-
Analyze the video
|
137 |
|
138 |
Args:
|
139 |
video_file (str): Path to the video file
|
140 |
user_query (str): Optional query to guide the analysis
|
141 |
|
142 |
Returns:
|
143 |
-
|
144 |
-
"""
|
145 |
-
summary_prompt = "Summarize this video."
|
146 |
-
if user_query:
|
147 |
-
summary_prompt += f" Also focus on: {user_query}"
|
148 |
-
summary = safe_call_gemini(video_file, summary_prompt)
|
149 |
-
|
150 |
-
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{summary}\n"
|
151 |
-
key_frames_gallery = get_key_frames(video_file, summary, user_query)
|
152 |
-
if not key_frames_gallery:
|
153 |
-
markdown_report += "\n*No key frames were extracted.*\n"
|
154 |
-
else:
|
155 |
-
markdown_report += "\n**Key Frames Extracted:**\n"
|
156 |
-
for idx, (img, caption) in enumerate(key_frames_gallery, start=1):
|
157 |
-
markdown_report += f"- **Frame {idx}:** {caption}\n"
|
158 |
-
return markdown_report, key_frames_gallery
|
159 |
-
|
160 |
-
def gradio_interface(video_file, user_query: str) -> (str, list):
|
161 |
-
"""
|
162 |
-
Gradio interface function to process video and return results.
|
163 |
-
|
164 |
-
Args:
|
165 |
-
video_file (str): Path to the uploaded video file
|
166 |
-
user_query (str): Optional query to guide analysis
|
167 |
-
|
168 |
-
Returns:
|
169 |
-
tuple: (Markdown report, gallery of key frames)
|
170 |
"""
|
|
|
171 |
if not video_file or not os.path.exists(video_file):
|
172 |
-
return "Please upload a valid video file."
|
173 |
if not video_file.lower().endswith('.mp4'):
|
174 |
-
return "Please upload an MP4 video file."
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
# Define the Gradio interface
|
178 |
iface = gr.Interface(
|
179 |
-
fn=
|
180 |
inputs=[
|
181 |
-
gr.Video(label="Upload Video File"),
|
182 |
-
gr.Textbox(label="Analysis Query (optional)
|
183 |
-
placeholder="e.g., focus on
|
184 |
-
],
|
185 |
-
outputs=[
|
186 |
-
gr.Markdown(label="Security & Surveillance Analysis Report"),
|
187 |
-
gr.Gallery(label="Extracted Key Frames", columns=2)
|
188 |
],
|
189 |
-
|
|
|
190 |
description=(
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"
|
194 |
)
|
195 |
)
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
-
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
import gradio as gr
|
|
|
4 |
from google import genai
|
5 |
+
from google.genai import types
|
|
|
6 |
|
7 |
# Retrieve API key from environment variables
|
8 |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
9 |
if not GOOGLE_API_KEY:
|
10 |
+
raise ValueError("Please set the GOOGLE_API_KEY environment variable with your Google Cloud API key.")
|
11 |
|
12 |
# Initialize the Gemini API client
|
13 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
14 |
+
MODEL_NAME = "gemini-2.5-pro-exp-03-25" # Model from the notebook that supports video analysis
|
15 |
|
16 |
+
def upload_and_process_video(video_file: str) -> types.File:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"""
|
18 |
+
Upload a video file to the Gemini API and wait for processing.
|
19 |
|
20 |
Args:
|
21 |
video_file (str): Path to the video file
|
|
|
22 |
|
23 |
Returns:
|
24 |
+
types.File: Processed video file object
|
25 |
"""
|
26 |
try:
|
27 |
+
video_file_obj = client.files.upload(file=video_file)
|
28 |
+
while video_file_obj.state == "PROCESSING":
|
29 |
+
print(f"Processing {video_file}...")
|
30 |
+
time.sleep(10)
|
31 |
+
video_file_obj = client.files.get(name=video_file_obj.name)
|
32 |
+
|
33 |
+
if video_file_obj.state == "FAILED":
|
34 |
+
raise ValueError(f"Video processing failed: {video_file_obj.state}")
|
35 |
+
|
36 |
+
print(f"Video processing complete: {video_file_obj.uri}")
|
37 |
+
return video_file_obj
|
38 |
except Exception as e:
|
39 |
+
raise Exception(f"Error uploading video: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
def analyze_video(video_file: str, user_query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
+
Analyze the video using the Gemini API and return a summary.
|
44 |
|
45 |
Args:
|
46 |
video_file (str): Path to the video file
|
47 |
user_query (str): Optional query to guide the analysis
|
48 |
|
49 |
Returns:
|
50 |
+
str: Markdown-formatted report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
+
# Validate input
|
53 |
if not video_file or not os.path.exists(video_file):
|
54 |
+
return "Please upload a valid video file."
|
55 |
if not video_file.lower().endswith('.mp4'):
|
56 |
+
return "Please upload an MP4 video file."
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Upload and process the video
|
60 |
+
video_file_obj = upload_and_process_video(video_file)
|
61 |
+
|
62 |
+
# Prepare prompt
|
63 |
+
prompt = "Provide a detailed summary of this video."
|
64 |
+
if user_query:
|
65 |
+
prompt += f" Focus on: {user_query}"
|
66 |
+
|
67 |
+
# Analyze video with Gemini API
|
68 |
+
response = client.models.generate_content(
|
69 |
+
model=MODEL_NAME,
|
70 |
+
contents=[
|
71 |
+
video_file_obj, # Pass the processed video file object
|
72 |
+
prompt
|
73 |
+
]
|
74 |
+
)
|
75 |
+
summary = response.text
|
76 |
+
|
77 |
+
# Generate Markdown report
|
78 |
+
markdown_report = (
|
79 |
+
"## Video Analysis Report\n\n"
|
80 |
+
f"**Summary:**\n{summary}\n"
|
81 |
+
)
|
82 |
+
return markdown_report
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
error_msg = (
|
86 |
+
"## Video Analysis Report\n\n"
|
87 |
+
f"**Error:** Unable to analyze video.\n"
|
88 |
+
f"Details: {str(e)}\n"
|
89 |
+
)
|
90 |
+
return error_msg
|
91 |
|
92 |
# Define the Gradio interface
|
93 |
iface = gr.Interface(
|
94 |
+
fn=analyze_video,
|
95 |
inputs=[
|
96 |
+
gr.Video(label="Upload Video File (MP4)", type="filepath"),
|
97 |
+
gr.Textbox(label="Analysis Query (optional)",
|
98 |
+
placeholder="e.g., focus on main events or themes")
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
+
outputs=gr.Markdown(label="Video Analysis Report"),
|
101 |
+
title="AI Video Analysis Agent with Gemini",
|
102 |
description=(
|
103 |
+
"Upload an MP4 video to get a summary using Google's Gemini API. "
|
104 |
+
"This tool analyzes the video content directly without audio or frame extraction. "
|
105 |
+
"Optionally, provide a query to guide the analysis."
|
106 |
)
|
107 |
)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
# Launch with share=True to create a public link
|
111 |
+
iface.launch(share=True)
|