File size: 5,746 Bytes
3efe7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import json
import time
import numpy as np
from tqdm import tqdm
import nltk

from Logger import GetLogger, MetricsLogger
from Embeddings import GetEmbeddings

# Metrics
from sklearn.metrics.pairwise import cosine_similarity
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from bert_score import score as bert_score

class Evaluator:
    """
    Evaluation pipeline for financial QA Agent.
    Uses eval_dataset.json to run queries, collect answers, and compute metrics.
    """
    def __init__(self, config_path="config.json", logger=None):
        with open(config_path, "r") as f:
            self.config = json.load(f)
        self.paths = self.config["paths"]
        

        if not logger:
            obj = GetLogger()
            logger = obj.get_logger()
        self.logger = logger
		
		# Metrics logger
        self.metrics_logger = MetricsLogger(logger=self.logger)

        # Initialize Agent
        self.agent = GetEmbeddings(config_path=config_path, logger=self.logger)
        self.agent.run()    # Load or rebuild FAISS + embeddings
        self.agent.load_summarizer()    # Load summarizer
        self.encoder = self.agent.load_encoder()

        # Load Dataset
        self.dataset = self.load_dataset()
        self.results = []
        self.failed_queries = []

        nltk.download('punkt', quiet=True)


    def load_dataset(self):
        path = self.paths["eval_dataset"]
        if not os.path.exists(path):
            raise FileNotFoundError(f"Dataset not found: {path}")
        with open(path, "r", encoding="utf-8") as f:
            return json.load(f)
    
    def measure_latency(self, func, *args, **kwargs):
        """Helper: measure time taken by a function call."""
        start = time.time()
        result = func(*args, **kwargs)
        latency = time.time() - start
        return result, latency
    
    def evaluate_query(self, query, reference):
        """Run one query, compare answer vs. reference, compute metrics."""
        try:
            # Run pipeline
            system_answer, latency = self.measure_latency(self.agent.answer_query, query)

            # 1. Embedding similarity (proxy retrieval quality)
            ref_emb = self.encoder.encode([reference], convert_to_numpy=True)
            ans_emb = self.encoder.encode([system_answer], convert_to_numpy=True)
            retrieval_quality = float(cosine_similarity(ref_emb, ans_emb)[0][0])

            # 2. ROUGE-L
            scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
            rouge_score = scorer.score(reference, system_answer)['rougeL'].fmeasure

            # 3. BLEU (with smoothing for short texts)
            smoothie = SmoothingFunction().method4
            bleu = sentence_bleu([reference.split()], system_answer.split(), smoothing_function=smoothie)

            # 4. BERTScore (semantic similarity)
            P, R, F1 = bert_score([system_answer], [reference], lang="en")
            bert_f1 = float(F1.mean())

            metrics = {
                "query": query,
                "reference": reference,
                "system_answer": system_answer,
                "retrieval_quality": retrieval_quality,
                "rougeL": rouge_score,
                "bleu": bleu,
                "bertscore_f1": bert_f1,
                "latency_sec": latency
            }

            # Log into metrics logger
            self.metrics_logger.log_query_metrics(query, metrics)

            return metrics

        except Exception as e:
            self.logger.error(f"Error evaluating query '{query}': {e}")
            return None
        
    def aggregate_summary(self):
        """Aggregate metrics across all queries for global averages."""
        if not self.results:
            return {}

        summary = {
            "avg_retrieval_quality": float(np.mean([r["retrieval_quality"] for r in self.results])),
            "avg_rougeL": float(np.mean([r["rougeL"] for r in self.results])),
            "avg_bleu": float(np.mean([r["bleu"] for r in self.results])),
            "avg_bertscore_f1": float(np.mean([r["bertscore_f1"] for r in self.results])),
            "avg_latency_sec": float(np.mean([r["latency_sec"] for r in self.results])),
            "num_queries": len(self.results)
        }
        return summary
    
    def run(self):
        """Run evaluation on entire dataset."""
        self.logger.info("Starting Evaluation...")

        for item in tqdm(self.dataset, desc="Queries"):
            query = item["query"]
            reference = item["reference"]
            result = self.evaluate_query(query, reference)
            if result:
                self.results.append(result)

        
        # Save result
        with open(self.paths["eval_results"], "w", encoding="utf-8") as f:
            json.dump(self.results, f, indent=2)
		
        if self.failed_queries:
            with open(self.paths["failed_queries"], "w", encoding="utf-8") as f:
                json.dump(self.failed_queries, f, indent=2)
        

        # Save metrics summary
        summary = self.aggregate_summary()   # NEW: aggregated averages
        self.logger.info(f"πŸ“Š Evaluation summary: {summary}")

        # Also save aggregated summary separately
        with open(self.paths.get("eval_summary", "eval_summary.json"), "w", encoding="utf-8") as f:
            json.dump(summary, f, indent=2)

        return self.results, summary


if __name__ == "__main__":
    evaluator = Evaluator()
    results, summary = evaluator.run()

    print("\n=== Sample Results ===")
    print(json.dumps(results[:2], indent=2))
    print("\n=== Summary ===")
    print(json.dumps(summary, indent=2))