File size: 1,840 Bytes
73e2d9e ccbeb57 73e2d9e ccbeb57 73e2d9e ccbeb57 73e2d9e 3efe7a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
title: Financial Qa Agent
emoji: π
colorFrom: red
colorTo: red
sdk: docker
app_port: 8501
tags:
- streamlit
pinned: false
short_description: Streamlit template space
license: mit
---
# Welcome to Streamlit!
Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
forums](https://discuss.streamlit.io).
# π Financial QA Agent
An AI-powered financial report assistant built with **RAG (Retrieval-Augmented Generation)**.
This app lets you upload financial reports, search them with semantic embeddings, and get concise answers/summaries using an open-source LLM.
## π Features
- Cleans financial report text files automatically
- Generates vector embeddings with FAISS for efficient retrieval
- Summarizes answers using `google/gemma-2b` (or lightweight models for deployment)
- Streamlit UI for easy interaction
- Evaluation pipeline with ROUGE, BLEU, and BERTScore
## π οΈ Tech Stack
- **Streamlit** for UI
- **FAISS** for vector search
- **Sentence-Transformers** for embeddings
- **Transformers** (Gemma/LLMs) for summarization
- **Scikit-learn, NLTK, BERTScore** for evaluation metrics
## π Project Structure
βββ app.py # Main Streamlit app (entrypoint)
βββ Embeddings.py # Embedding + FAISS pipeline
βββ Data_Cleaning.py # Data cleaning utility
βββ Logger.py # Logging utility
βββ evaluation.py # Evaluation pipeline
βββ config.json # Configurations
βββ eval_dataset.json # Sample evaluation dataset
βββ requirements.txt # Dependencies
βββ README.md # Project documentation
βββ .gitignore # Ignore unnecessary files
## β‘ Running Locally
```bash
pip install -r requirements.txt
streamlit run app.py
|