--- title: Financial Qa Agent emoji: 🚀 colorFrom: red colorTo: red sdk: docker app_port: 8501 tags: - streamlit pinned: false short_description: Streamlit template space license: mit --- # Welcome to Streamlit! Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart: If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community forums](https://discuss.streamlit.io). # 📊 Financial QA Agent An AI-powered financial report assistant built with **RAG (Retrieval-Augmented Generation)**. This app lets you upload financial reports, search them with semantic embeddings, and get concise answers/summaries using an open-source LLM. ## 🚀 Features - Cleans financial report text files automatically - Generates vector embeddings with FAISS for efficient retrieval - Summarizes answers using `google/gemma-2b` (or lightweight models for deployment) - Streamlit UI for easy interaction - Evaluation pipeline with ROUGE, BLEU, and BERTScore ## 🛠️ Tech Stack - **Streamlit** for UI - **FAISS** for vector search - **Sentence-Transformers** for embeddings - **Transformers** (Gemma/LLMs) for summarization - **Scikit-learn, NLTK, BERTScore** for evaluation metrics ## 📂 Project Structure ├── app.py # Main Streamlit app (entrypoint) ├── Embeddings.py # Embedding + FAISS pipeline ├── Data_Cleaning.py # Data cleaning utility ├── Logger.py # Logging utility ├── evaluation.py # Evaluation pipeline ├── config.json # Configurations ├── eval_dataset.json # Sample evaluation dataset ├── requirements.txt # Dependencies ├── README.md # Project documentation └── .gitignore # Ignore unnecessary files ## ⚡ Running Locally ```bash pip install -r requirements.txt streamlit run app.py