from huggingface_hub import HfApi import gradio as gr from urllib.parse import urlparse import requests import time import os from utils.gradio_helpers import parse_outputs, process_outputs inputs = [] inputs.append(gr.Textbox( label="Model Image", info='''Clear picture of the model''' )) inputs.append(gr.Textbox( label="Garment Image", info='''Clear picture of upper body garment''' )) inputs.append(gr.Textbox( label="Person Mask", info='''Mask of the person's upper body''' )) inputs.append(gr.Slider( label="Steps", info='''Inference steps''', value=20, minimum=1, maximum=40, step=1, )) inputs.append(gr.Slider( label="Guidance Scale", info='''Guidance scale''', value=2, minimum=1, maximum=5 )) inputs.append(gr.Number( label="Seed", info='''Seed''', value=0 )) inputs.append(gr.Slider( label="Num Samples", info='''Number of samples''', value=1, minimum=1, maximum=4, step=1, )) names = ['model_image', 'garment_image', 'person_mask', 'steps', 'guidance_scale', 'seed', 'num_samples'] outputs = [] outputs.append(gr.Image()) outputs.append(gr.Image()) outputs.append(gr.Image()) outputs.append(gr.Image()) expected_outputs = len(outputs) def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): headers = {'Content-Type': 'application/json'} payload = {"input": {}} # TODO: extract the Bearer access token from the request if not request: raise gr.Error("The submission failed!") print("Request headers dictionary:", request.headers) try: authorization = request.headers["Authorization"] except KeyError: raise gr.Error("Missing authorization in the headers") # Extract the token part from the authorization try: bearer, token = authorization.split(" ") except ValueError: raise gr.Error("Invalid format for Authorization header. It should be 'Bearer '") try: hf_api = HfApi(token=token) userInfo = hf_api.whoami(token) if not userInfo: raise gr.Error("The provider API key is invalid!") except Exception as err: raise gr.Error("The provider API key is invalid!") base_url = "http://0.0.0.0:7860" for i, key in enumerate(names): value = args[i] if value and (os.path.exists(str(value))): value = f"{base_url}/file=" + value if value is not None and value != "": payload["input"][key] = value response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) if response.status_code == 201: follow_up_url = response.json()["urls"]["get"] response = requests.get(follow_up_url, headers=headers) while response.json()["status"] != "succeeded": if response.json()["status"] == "failed": raise gr.Error("The submission failed!") response = requests.get(follow_up_url, headers=headers) time.sleep(1) if response.status_code == 200: json_response = response.json() #If the output component is JSON return the entire output response if(outputs[0].get_config()["name"] == "json"): return json_response["output"] predict_outputs = parse_outputs(json_response["output"]) processed_outputs = process_outputs(predict_outputs) difference_outputs = expected_outputs - len(processed_outputs) # If less outputs than expected, hide the extra ones if difference_outputs > 0: extra_outputs = [gr.update(visible=False)] * difference_outputs processed_outputs.extend(extra_outputs) # If more outputs than expected, cap the outputs to the expected number elif difference_outputs < 0: processed_outputs = processed_outputs[:difference_outputs] return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] else: if(response.status_code == 409): raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") raise gr.Error(f"The submission failed! Error: {response.status_code}") title = "Demo for oot_diffusion_with_mask cog image by jbilcke" model_description = "Don't mind me :) this is just a fork of viktorfa/oot_diffusion_with_mask" app = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title=title, description=model_description, allow_flagging="never", ) app.launch()