Spaces:
Runtime error
Runtime error
Upload 27 files
Browse files- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py +7 -7
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py +23 -8
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py +23 -8
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py +23 -7
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py +23 -9
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py +22 -8
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py +18 -5
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py
CHANGED
|
@@ -8,7 +8,7 @@ from PIL import Image
|
|
| 8 |
|
| 9 |
from diffusion_webui.utils.model_list import (
|
| 10 |
controlnet_canny_model_list,
|
| 11 |
-
|
| 12 |
)
|
| 13 |
from diffusion_webui.utils.scheduler_list import (
|
| 14 |
SCHEDULER_LIST,
|
|
@@ -40,9 +40,9 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
|
| 43 |
-
def
|
| 44 |
image = np.array(image_path)
|
| 45 |
-
image = Image.fromarray(
|
| 46 |
return image
|
| 47 |
|
| 48 |
def controlnet_canny_inpaint(
|
|
@@ -77,8 +77,8 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
| 77 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 78 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 79 |
|
| 80 |
-
normal_image = self.
|
| 81 |
-
mask_image = self.
|
| 82 |
|
| 83 |
control_image = self.controlnet_canny_inpaint(image_path=image_path)
|
| 84 |
pipe = self.load_model(
|
|
@@ -133,8 +133,8 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
| 133 |
with gr.Column():
|
| 134 |
controlnet_canny_inpaint_stable_model_id = (
|
| 135 |
gr.Dropdown(
|
| 136 |
-
choices=
|
| 137 |
-
value=
|
| 138 |
label="Stable Model Id",
|
| 139 |
)
|
| 140 |
)
|
|
|
|
| 8 |
|
| 9 |
from diffusion_webui.utils.model_list import (
|
| 10 |
controlnet_canny_model_list,
|
| 11 |
+
stable_inpiant_model_list,
|
| 12 |
)
|
| 13 |
from diffusion_webui.utils.scheduler_list import (
|
| 14 |
SCHEDULER_LIST,
|
|
|
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
|
| 43 |
+
def load_image(self, image_path):
|
| 44 |
image = np.array(image_path)
|
| 45 |
+
image = Image.fromarray(image_path)
|
| 46 |
return image
|
| 47 |
|
| 48 |
def controlnet_canny_inpaint(
|
|
|
|
| 77 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 78 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 79 |
|
| 80 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 81 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 82 |
|
| 83 |
control_image = self.controlnet_canny_inpaint(image_path=image_path)
|
| 84 |
pipe = self.load_model(
|
|
|
|
| 133 |
with gr.Column():
|
| 134 |
controlnet_canny_inpaint_stable_model_id = (
|
| 135 |
gr.Dropdown(
|
| 136 |
+
choices=stable_inpiant_model_list,
|
| 137 |
+
value=stable_inpiant_model_list[0],
|
| 138 |
label="Stable Model Id",
|
| 139 |
)
|
| 140 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
-
from diffusers import ControlNetModel
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
from diffusion_webui.utils.model_list import (
|
| 9 |
controlnet_depth_model_list,
|
| 10 |
-
|
| 11 |
)
|
| 12 |
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
SCHEDULER_LIST,
|
|
@@ -26,7 +27,7 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
| 26 |
controlnet = ControlNetModel.from_pretrained(
|
| 27 |
controlnet_model_path, torch_dtype=torch.float16
|
| 28 |
)
|
| 29 |
-
self.pipe =
|
| 30 |
pretrained_model_name_or_path=stable_model_path,
|
| 31 |
controlnet=controlnet,
|
| 32 |
safety_checker=None,
|
|
@@ -39,6 +40,12 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
| 39 |
|
| 40 |
return self.pipe
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def controlnet_inpaint_depth(self, image_path: str):
|
| 43 |
depth_estimator = pipeline("depth-estimation")
|
| 44 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
@@ -64,8 +71,13 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
| 64 |
scheduler: str,
|
| 65 |
seed_generator: int,
|
| 66 |
):
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
pipe = self.load_model(
|
| 71 |
stable_model_path=stable_model_path,
|
|
@@ -81,7 +93,10 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
| 81 |
|
| 82 |
output = pipe(
|
| 83 |
prompt=prompt,
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
negative_prompt=negative_prompt,
|
| 86 |
num_images_per_prompt=num_images_per_prompt,
|
| 87 |
num_inference_steps=num_inference_step,
|
|
@@ -117,8 +132,8 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
| 117 |
with gr.Column():
|
| 118 |
controlnet_depth_inpaint_stable_model_id = (
|
| 119 |
gr.Dropdown(
|
| 120 |
-
choices=
|
| 121 |
-
value=
|
| 122 |
label="Stable Model Id",
|
| 123 |
)
|
| 124 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
from diffusers import ControlNetModel
|
| 5 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 6 |
from PIL import Image
|
| 7 |
from transformers import pipeline
|
| 8 |
|
| 9 |
from diffusion_webui.utils.model_list import (
|
| 10 |
controlnet_depth_model_list,
|
| 11 |
+
stable_inpiant_model_list,
|
| 12 |
)
|
| 13 |
from diffusion_webui.utils.scheduler_list import (
|
| 14 |
SCHEDULER_LIST,
|
|
|
|
| 27 |
controlnet = ControlNetModel.from_pretrained(
|
| 28 |
controlnet_model_path, torch_dtype=torch.float16
|
| 29 |
)
|
| 30 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 31 |
pretrained_model_name_or_path=stable_model_path,
|
| 32 |
controlnet=controlnet,
|
| 33 |
safety_checker=None,
|
|
|
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
|
| 43 |
+
def load_image(self, image_path):
|
| 44 |
+
image = np.array(image_path)
|
| 45 |
+
image = Image.fromarray(image_path)
|
| 46 |
+
return image
|
| 47 |
+
|
| 48 |
+
|
| 49 |
def controlnet_inpaint_depth(self, image_path: str):
|
| 50 |
depth_estimator = pipeline("depth-estimation")
|
| 51 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
|
|
| 71 |
scheduler: str,
|
| 72 |
seed_generator: int,
|
| 73 |
):
|
| 74 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 75 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 76 |
+
|
| 77 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 78 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 79 |
+
|
| 80 |
+
control_image = self.controlnet_inpaint_depth(image_path=image_path)
|
| 81 |
|
| 82 |
pipe = self.load_model(
|
| 83 |
stable_model_path=stable_model_path,
|
|
|
|
| 93 |
|
| 94 |
output = pipe(
|
| 95 |
prompt=prompt,
|
| 96 |
+
|
| 97 |
+
image=normal_image,
|
| 98 |
+
mask_image=mask_image,
|
| 99 |
+
control_image=control_image,
|
| 100 |
negative_prompt=negative_prompt,
|
| 101 |
num_images_per_prompt=num_images_per_prompt,
|
| 102 |
num_inference_steps=num_inference_step,
|
|
|
|
| 132 |
with gr.Column():
|
| 133 |
controlnet_depth_inpaint_stable_model_id = (
|
| 134 |
gr.Dropdown(
|
| 135 |
+
choices=stable_inpiant_model_list,
|
| 136 |
+
value=stable_inpiant_model_list[0],
|
| 137 |
label="Stable Model Id",
|
| 138 |
)
|
| 139 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py
CHANGED
|
@@ -2,16 +2,18 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import HEDdetector
|
| 5 |
-
from diffusers import ControlNetModel
|
|
|
|
| 6 |
|
| 7 |
from diffusion_webui.utils.model_list import (
|
| 8 |
controlnet_hed_model_list,
|
| 9 |
-
|
| 10 |
)
|
| 11 |
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
SCHEDULER_LIST,
|
| 13 |
get_scheduler_list,
|
| 14 |
)
|
|
|
|
| 15 |
|
| 16 |
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
|
|
@@ -25,7 +27,7 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
| 25 |
controlnet = ControlNetModel.from_pretrained(
|
| 26 |
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
)
|
| 28 |
-
self.pipe =
|
| 29 |
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
controlnet=controlnet,
|
| 31 |
safety_checker=None,
|
|
@@ -38,6 +40,12 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
| 38 |
|
| 39 |
return self.pipe
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def controlnet_inpaint_hed(self, image_path: str):
|
| 42 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 43 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
@@ -60,8 +68,13 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
| 60 |
scheduler: str,
|
| 61 |
seed_generator: int,
|
| 62 |
):
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
pipe = self.load_model(
|
| 67 |
stable_model_path=stable_model_path,
|
|
@@ -77,7 +90,9 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
| 77 |
|
| 78 |
output = pipe(
|
| 79 |
prompt=prompt,
|
| 80 |
-
image=
|
|
|
|
|
|
|
| 81 |
negative_prompt=negative_prompt,
|
| 82 |
num_images_per_prompt=num_images_per_prompt,
|
| 83 |
num_inference_steps=num_inference_step,
|
|
@@ -113,8 +128,8 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
| 113 |
with gr.Column():
|
| 114 |
controlnet_hed_inpaint_stable_model_id = (
|
| 115 |
gr.Dropdown(
|
| 116 |
-
choices=
|
| 117 |
-
value=
|
| 118 |
label="Stable Model Id",
|
| 119 |
)
|
| 120 |
)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import HEDdetector
|
| 5 |
+
from diffusers import ControlNetModel
|
| 6 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 7 |
|
| 8 |
from diffusion_webui.utils.model_list import (
|
| 9 |
controlnet_hed_model_list,
|
| 10 |
+
stable_inpiant_model_list,
|
| 11 |
)
|
| 12 |
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
SCHEDULER_LIST,
|
| 14 |
get_scheduler_list,
|
| 15 |
)
|
| 16 |
+
from PIL import Image
|
| 17 |
|
| 18 |
# https://github.com/mikonvergence/ControlNetInpaint
|
| 19 |
|
|
|
|
| 27 |
controlnet = ControlNetModel.from_pretrained(
|
| 28 |
controlnet_model_path, torch_dtype=torch.float16
|
| 29 |
)
|
| 30 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 31 |
pretrained_model_name_or_path=stable_model_path,
|
| 32 |
controlnet=controlnet,
|
| 33 |
safety_checker=None,
|
|
|
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
|
| 43 |
+
def load_image(self, image_path):
|
| 44 |
+
image = np.array(image_path)
|
| 45 |
+
image = Image.fromarray(image_path)
|
| 46 |
+
return image
|
| 47 |
+
|
| 48 |
+
|
| 49 |
def controlnet_inpaint_hed(self, image_path: str):
|
| 50 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 51 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
|
|
| 68 |
scheduler: str,
|
| 69 |
seed_generator: int,
|
| 70 |
):
|
| 71 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 72 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 73 |
+
|
| 74 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 75 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 76 |
+
|
| 77 |
+
control_image = self.controlnet_inpaint_hed(image_path=image_path)
|
| 78 |
|
| 79 |
pipe = self.load_model(
|
| 80 |
stable_model_path=stable_model_path,
|
|
|
|
| 90 |
|
| 91 |
output = pipe(
|
| 92 |
prompt=prompt,
|
| 93 |
+
image=normal_image,
|
| 94 |
+
mask_image=mask_image,
|
| 95 |
+
control_image=control_image,
|
| 96 |
negative_prompt=negative_prompt,
|
| 97 |
num_images_per_prompt=num_images_per_prompt,
|
| 98 |
num_inference_steps=num_inference_step,
|
|
|
|
| 128 |
with gr.Column():
|
| 129 |
controlnet_hed_inpaint_stable_model_id = (
|
| 130 |
gr.Dropdown(
|
| 131 |
+
choices=stable_inpiant_model_list,
|
| 132 |
+
value=stable_inpiant_model_list[0],
|
| 133 |
label="Stable Model Id",
|
| 134 |
)
|
| 135 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py
CHANGED
|
@@ -2,16 +2,18 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import MLSDdetector
|
| 5 |
-
from diffusers import ControlNetModel
|
|
|
|
| 6 |
|
| 7 |
from diffusion_webui.utils.model_list import (
|
| 8 |
controlnet_mlsd_model_list,
|
| 9 |
-
|
| 10 |
)
|
| 11 |
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
SCHEDULER_LIST,
|
| 13 |
get_scheduler_list,
|
| 14 |
)
|
|
|
|
| 15 |
|
| 16 |
# https://github.com/mikonvergence/ControlNetInpaint
|
| 17 |
|
|
@@ -25,7 +27,7 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
| 25 |
controlnet = ControlNetModel.from_pretrained(
|
| 26 |
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
)
|
| 28 |
-
self.pipe =
|
| 29 |
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
controlnet=controlnet,
|
| 31 |
safety_checker=None,
|
|
@@ -37,6 +39,12 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
| 37 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 38 |
|
| 39 |
return self.pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def controlnet_inpaint_mlsd(self, image_path: str):
|
| 42 |
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
|
@@ -61,7 +69,13 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
| 61 |
seed_generator: int,
|
| 62 |
):
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
pipe = self.load_model(
|
| 67 |
stable_model_path=stable_model_path,
|
|
@@ -77,7 +91,9 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
| 77 |
|
| 78 |
output = pipe(
|
| 79 |
prompt=prompt,
|
| 80 |
-
image=
|
|
|
|
|
|
|
| 81 |
negative_prompt=negative_prompt,
|
| 82 |
num_images_per_prompt=num_images_per_prompt,
|
| 83 |
num_inference_steps=num_inference_step,
|
|
@@ -113,8 +129,8 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
| 113 |
with gr.Column():
|
| 114 |
controlnet_mlsd_inpaint_stable_model_id = (
|
| 115 |
gr.Dropdown(
|
| 116 |
-
choices=
|
| 117 |
-
value=
|
| 118 |
label="Stable Model Id",
|
| 119 |
)
|
| 120 |
)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import MLSDdetector
|
| 5 |
+
from diffusers import ControlNetModel
|
| 6 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 7 |
|
| 8 |
from diffusion_webui.utils.model_list import (
|
| 9 |
controlnet_mlsd_model_list,
|
| 10 |
+
stable_inpiant_model_list,
|
| 11 |
)
|
| 12 |
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
SCHEDULER_LIST,
|
| 14 |
get_scheduler_list,
|
| 15 |
)
|
| 16 |
+
from PIL import Image
|
| 17 |
|
| 18 |
# https://github.com/mikonvergence/ControlNetInpaint
|
| 19 |
|
|
|
|
| 27 |
controlnet = ControlNetModel.from_pretrained(
|
| 28 |
controlnet_model_path, torch_dtype=torch.float16
|
| 29 |
)
|
| 30 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 31 |
pretrained_model_name_or_path=stable_model_path,
|
| 32 |
controlnet=controlnet,
|
| 33 |
safety_checker=None,
|
|
|
|
| 39 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
+
|
| 43 |
+
def load_image(self, image_path):
|
| 44 |
+
image = np.array(image_path)
|
| 45 |
+
image = Image.fromarray(image_path)
|
| 46 |
+
return image
|
| 47 |
+
|
| 48 |
|
| 49 |
def controlnet_inpaint_mlsd(self, image_path: str):
|
| 50 |
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
|
|
|
| 69 |
seed_generator: int,
|
| 70 |
):
|
| 71 |
|
| 72 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 73 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 74 |
+
|
| 75 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 76 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 77 |
+
|
| 78 |
+
control_image = self.controlnet_inpaint_mlsd(image_path=image_path)
|
| 79 |
|
| 80 |
pipe = self.load_model(
|
| 81 |
stable_model_path=stable_model_path,
|
|
|
|
| 91 |
|
| 92 |
output = pipe(
|
| 93 |
prompt=prompt,
|
| 94 |
+
image=normal_image,
|
| 95 |
+
mask_image=mask_image,
|
| 96 |
+
control_image=control_image,
|
| 97 |
negative_prompt=negative_prompt,
|
| 98 |
num_images_per_prompt=num_images_per_prompt,
|
| 99 |
num_inference_steps=num_inference_step,
|
|
|
|
| 129 |
with gr.Column():
|
| 130 |
controlnet_mlsd_inpaint_stable_model_id = (
|
| 131 |
gr.Dropdown(
|
| 132 |
+
choices=stable_inpiant_model_list,
|
| 133 |
+
value=stable_inpiant_model_list[0],
|
| 134 |
label="Stable Model Id",
|
| 135 |
)
|
| 136 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py
CHANGED
|
@@ -2,11 +2,13 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import OpenposeDetector
|
| 5 |
-
from diffusers import ControlNetModel
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from diffusion_webui.utils.model_list import (
|
| 8 |
controlnet_pose_model_list,
|
| 9 |
-
|
| 10 |
)
|
| 11 |
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
SCHEDULER_LIST,
|
|
@@ -26,7 +28,7 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
| 26 |
controlnet_model_path, torch_dtype=torch.float16
|
| 27 |
)
|
| 28 |
|
| 29 |
-
self.pipe =
|
| 30 |
pretrained_model_name_or_path=stable_model_path,
|
| 31 |
controlnet=controlnet,
|
| 32 |
safety_checker=None,
|
|
@@ -38,7 +40,12 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
| 38 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 39 |
|
| 40 |
return self.pipe
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def controlnet_pose_inpaint(self, image_path: str):
|
| 43 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 44 |
|
|
@@ -62,8 +69,13 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
| 62 |
scheduler: str,
|
| 63 |
seed_generator: int,
|
| 64 |
):
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
pipe = self.load_model(
|
| 69 |
stable_model_path=stable_model_path,
|
|
@@ -79,7 +91,9 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
| 79 |
|
| 80 |
output = pipe(
|
| 81 |
prompt=prompt,
|
| 82 |
-
image=
|
|
|
|
|
|
|
| 83 |
negative_prompt=negative_prompt,
|
| 84 |
num_images_per_prompt=num_images_per_prompt,
|
| 85 |
num_inference_steps=num_inference_step,
|
|
@@ -115,8 +129,8 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
| 115 |
with gr.Column():
|
| 116 |
controlnet_pose_inpaint_stable_model_id = (
|
| 117 |
gr.Dropdown(
|
| 118 |
-
choices=
|
| 119 |
-
value=
|
| 120 |
label="Stable Model Id",
|
| 121 |
)
|
| 122 |
)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import OpenposeDetector
|
| 5 |
+
from diffusers import ControlNetModel
|
| 6 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
from diffusion_webui.utils.model_list import (
|
| 10 |
controlnet_pose_model_list,
|
| 11 |
+
stable_inpiant_model_list,
|
| 12 |
)
|
| 13 |
from diffusion_webui.utils.scheduler_list import (
|
| 14 |
SCHEDULER_LIST,
|
|
|
|
| 28 |
controlnet_model_path, torch_dtype=torch.float16
|
| 29 |
)
|
| 30 |
|
| 31 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 32 |
pretrained_model_name_or_path=stable_model_path,
|
| 33 |
controlnet=controlnet,
|
| 34 |
safety_checker=None,
|
|
|
|
| 40 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 41 |
|
| 42 |
return self.pipe
|
| 43 |
+
|
| 44 |
+
def load_image(self, image_path):
|
| 45 |
+
image = np.array(image_path)
|
| 46 |
+
image = Image.fromarray(image_path)
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
def controlnet_pose_inpaint(self, image_path: str):
|
| 50 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 51 |
|
|
|
|
| 69 |
scheduler: str,
|
| 70 |
seed_generator: int,
|
| 71 |
):
|
| 72 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 73 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 74 |
+
|
| 75 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 76 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 77 |
+
|
| 78 |
+
controlnet_image = self.controlnet_pose_inpaint(image_path=image_path)
|
| 79 |
|
| 80 |
pipe = self.load_model(
|
| 81 |
stable_model_path=stable_model_path,
|
|
|
|
| 91 |
|
| 92 |
output = pipe(
|
| 93 |
prompt=prompt,
|
| 94 |
+
image=normal_image,
|
| 95 |
+
mask_image=mask_image,
|
| 96 |
+
controlnet_image=controlnet_image,
|
| 97 |
negative_prompt=negative_prompt,
|
| 98 |
num_images_per_prompt=num_images_per_prompt,
|
| 99 |
num_inference_steps=num_inference_step,
|
|
|
|
| 129 |
with gr.Column():
|
| 130 |
controlnet_pose_inpaint_stable_model_id = (
|
| 131 |
gr.Dropdown(
|
| 132 |
+
choices=stable_inpiant_model_list,
|
| 133 |
+
value=stable_inpiant_model_list[0],
|
| 134 |
label="Stable Model Id",
|
| 135 |
)
|
| 136 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py
CHANGED
|
@@ -2,11 +2,13 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import HEDdetector
|
| 5 |
-
from diffusers import ControlNetModel
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from diffusion_webui.utils.model_list import (
|
| 8 |
controlnet_scribble_model_list,
|
| 9 |
-
|
| 10 |
)
|
| 11 |
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
SCHEDULER_LIST,
|
|
@@ -25,7 +27,7 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
| 25 |
controlnet_model_path, torch_dtype=torch.float16
|
| 26 |
)
|
| 27 |
|
| 28 |
-
self.pipe =
|
| 29 |
pretrained_model_name_or_path=stable_model_path,
|
| 30 |
controlnet=controlnet,
|
| 31 |
safety_checker=None,
|
|
@@ -37,6 +39,11 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
| 37 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 38 |
|
| 39 |
return self.pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def controlnet_inpaint_scribble(self, image_path: str):
|
| 42 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
|
@@ -61,8 +68,13 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
| 61 |
scheduler: str,
|
| 62 |
seed_generator: int,
|
| 63 |
):
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
pipe = self.load_model(
|
| 68 |
stable_model_path=stable_model_path,
|
|
@@ -78,7 +90,9 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
| 78 |
|
| 79 |
output = pipe(
|
| 80 |
prompt=prompt,
|
| 81 |
-
image=
|
|
|
|
|
|
|
| 82 |
negative_prompt=negative_prompt,
|
| 83 |
num_images_per_prompt=num_images_per_prompt,
|
| 84 |
num_inference_steps=num_inference_step,
|
|
@@ -114,8 +128,8 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
| 114 |
with gr.Column():
|
| 115 |
controlnet_scribble_inpaint_stable_model_id = (
|
| 116 |
gr.Dropdown(
|
| 117 |
-
choices=
|
| 118 |
-
value=
|
| 119 |
label="Stable Model Id",
|
| 120 |
)
|
| 121 |
)
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from controlnet_aux import HEDdetector
|
| 5 |
+
from diffusers import ControlNetModel
|
| 6 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
from diffusion_webui.utils.model_list import (
|
| 10 |
controlnet_scribble_model_list,
|
| 11 |
+
stable_inpiant_model_list,
|
| 12 |
)
|
| 13 |
from diffusion_webui.utils.scheduler_list import (
|
| 14 |
SCHEDULER_LIST,
|
|
|
|
| 27 |
controlnet_model_path, torch_dtype=torch.float16
|
| 28 |
)
|
| 29 |
|
| 30 |
+
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 31 |
pretrained_model_name_or_path=stable_model_path,
|
| 32 |
controlnet=controlnet,
|
| 33 |
safety_checker=None,
|
|
|
|
| 39 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 40 |
|
| 41 |
return self.pipe
|
| 42 |
+
|
| 43 |
+
def load_image(self, image_path):
|
| 44 |
+
image = np.array(image_path)
|
| 45 |
+
image = Image.fromarray(image_path)
|
| 46 |
+
return image
|
| 47 |
|
| 48 |
def controlnet_inpaint_scribble(self, image_path: str):
|
| 49 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
|
|
|
| 68 |
scheduler: str,
|
| 69 |
seed_generator: int,
|
| 70 |
):
|
| 71 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 72 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 73 |
+
|
| 74 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 75 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 76 |
+
|
| 77 |
+
controlnet_image = self.controlnet_inpaint_scribble(image_path=image_path)
|
| 78 |
|
| 79 |
pipe = self.load_model(
|
| 80 |
stable_model_path=stable_model_path,
|
|
|
|
| 90 |
|
| 91 |
output = pipe(
|
| 92 |
prompt=prompt,
|
| 93 |
+
image=normal_image,
|
| 94 |
+
mask_image=mask_image,
|
| 95 |
+
controlnet_image=controlnet_image,
|
| 96 |
negative_prompt=negative_prompt,
|
| 97 |
num_images_per_prompt=num_images_per_prompt,
|
| 98 |
num_inference_steps=num_inference_step,
|
|
|
|
| 128 |
with gr.Column():
|
| 129 |
controlnet_scribble_inpaint_stable_model_id = (
|
| 130 |
gr.Dropdown(
|
| 131 |
+
choices=stable_inpiant_model_list,
|
| 132 |
+
value=stable_inpiant_model_list[0],
|
| 133 |
label="Stable Model Id",
|
| 134 |
)
|
| 135 |
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py
CHANGED
|
@@ -7,7 +7,7 @@ from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
|
| 7 |
|
| 8 |
from diffusion_webui.utils.model_list import (
|
| 9 |
controlnet_seg_model_list,
|
| 10 |
-
|
| 11 |
)
|
| 12 |
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
SCHEDULER_LIST,
|
|
@@ -200,6 +200,11 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
| 200 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 201 |
|
| 202 |
return self.pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
def controlnet_seg_inpaint(self, image_path: str):
|
| 205 |
image_processor = AutoImageProcessor.from_pretrained(
|
|
@@ -246,7 +251,13 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
| 246 |
seed_generator: int,
|
| 247 |
):
|
| 248 |
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
pipe = self.load_model(
|
| 252 |
stable_model_path=stable_model_path,
|
|
@@ -262,7 +273,9 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
| 262 |
|
| 263 |
output = pipe(
|
| 264 |
prompt=prompt,
|
| 265 |
-
image=
|
|
|
|
|
|
|
| 266 |
negative_prompt=negative_prompt,
|
| 267 |
num_images_per_prompt=num_images_per_prompt,
|
| 268 |
num_inference_steps=num_inference_step,
|
|
@@ -298,8 +311,8 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
| 298 |
with gr.Column():
|
| 299 |
controlnet_seg_inpaint_stable_model_id = (
|
| 300 |
gr.Dropdown(
|
| 301 |
-
choices=
|
| 302 |
-
value=
|
| 303 |
label="Stable Model Id",
|
| 304 |
)
|
| 305 |
)
|
|
|
|
| 7 |
|
| 8 |
from diffusion_webui.utils.model_list import (
|
| 9 |
controlnet_seg_model_list,
|
| 10 |
+
stable_inpiant_model_list,
|
| 11 |
)
|
| 12 |
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
SCHEDULER_LIST,
|
|
|
|
| 200 |
self.pipe.enable_xformers_memory_efficient_attention()
|
| 201 |
|
| 202 |
return self.pipe
|
| 203 |
+
|
| 204 |
+
def load_image(self, image_path):
|
| 205 |
+
image = np.array(image_path)
|
| 206 |
+
image = Image.fromarray(image_path)
|
| 207 |
+
return image
|
| 208 |
|
| 209 |
def controlnet_seg_inpaint(self, image_path: str):
|
| 210 |
image_processor = AutoImageProcessor.from_pretrained(
|
|
|
|
| 251 |
seed_generator: int,
|
| 252 |
):
|
| 253 |
|
| 254 |
+
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
| 255 |
+
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
| 256 |
+
|
| 257 |
+
normal_image = self.load_image(image_path=normal_image)
|
| 258 |
+
mask_image = self.load_image(image_path=mask_image)
|
| 259 |
+
|
| 260 |
+
controlnet_image = self.controlnet_seg_inpaint(image_path=image_path)
|
| 261 |
|
| 262 |
pipe = self.load_model(
|
| 263 |
stable_model_path=stable_model_path,
|
|
|
|
| 273 |
|
| 274 |
output = pipe(
|
| 275 |
prompt=prompt,
|
| 276 |
+
image=normal_image,
|
| 277 |
+
mask_image=mask_image,
|
| 278 |
+
controlnet_image=controlnet_image,
|
| 279 |
negative_prompt=negative_prompt,
|
| 280 |
num_images_per_prompt=num_images_per_prompt,
|
| 281 |
num_inference_steps=num_inference_step,
|
|
|
|
| 311 |
with gr.Column():
|
| 312 |
controlnet_seg_inpaint_stable_model_id = (
|
| 313 |
gr.Dropdown(
|
| 314 |
+
choices=stable_inpiant_model_list,
|
| 315 |
+
value=stable_inpiant_model_list[0],
|
| 316 |
label="Stable Model Id",
|
| 317 |
)
|
| 318 |
)
|