Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,10 +2,8 @@ import os
|
|
| 2 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" # отключаем нестабильную загрузку
|
| 3 |
|
| 4 |
import torch
|
|
|
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
-
from fastapi import FastAPI
|
| 7 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
-
from pydantic import BaseModel
|
| 9 |
|
| 10 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
| 11 |
|
|
@@ -21,8 +19,9 @@ context = (
|
|
| 21 |
"расположенный в городе Иннополис, Татарстан.\n"
|
| 22 |
)
|
| 23 |
|
| 24 |
-
def respond(message
|
| 25 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
|
|
|
| 26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 27 |
|
| 28 |
with torch.no_grad():
|
|
@@ -37,6 +36,7 @@ def respond(message: str) -> str:
|
|
| 37 |
|
| 38 |
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 39 |
|
|
|
|
| 40 |
if "Ответ:" in full_output:
|
| 41 |
answer = full_output.split("Ответ:")[-1].strip()
|
| 42 |
else:
|
|
@@ -44,27 +44,12 @@ def respond(message: str) -> str:
|
|
| 44 |
|
| 45 |
return answer
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
allow_credentials=True,
|
| 53 |
-
allow_methods=["*"],
|
| 54 |
-
allow_headers=["*"],
|
| 55 |
)
|
| 56 |
|
| 57 |
-
class QuestionRequest(BaseModel):
|
| 58 |
-
question: str
|
| 59 |
-
|
| 60 |
-
class AnswerResponse(BaseModel):
|
| 61 |
-
answer: str
|
| 62 |
-
|
| 63 |
-
@app.post("/api/ask", response_model=AnswerResponse)
|
| 64 |
-
def ask_question(request: QuestionRequest):
|
| 65 |
-
answer = respond(request.question)
|
| 66 |
-
return {"answer": answer}
|
| 67 |
-
|
| 68 |
if __name__ == "__main__":
|
| 69 |
-
|
| 70 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 2 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" # отключаем нестабильную загрузку
|
| 3 |
|
| 4 |
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
| 9 |
|
|
|
|
| 19 |
"расположенный в городе Иннополис, Татарстан.\n"
|
| 20 |
)
|
| 21 |
|
| 22 |
+
def respond(message, history=None):
|
| 23 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
| 24 |
+
|
| 25 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 26 |
|
| 27 |
with torch.no_grad():
|
|
|
|
| 36 |
|
| 37 |
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 38 |
|
| 39 |
+
# Извлекаем только текст после "Ответ:"
|
| 40 |
if "Ответ:" in full_output:
|
| 41 |
answer = full_output.split("Ответ:")[-1].strip()
|
| 42 |
else:
|
|
|
|
| 44 |
|
| 45 |
return answer
|
| 46 |
|
| 47 |
+
iface = gr.ChatInterface(
|
| 48 |
+
fn=respond,
|
| 49 |
+
title="Бот об Университете Иннополис (на русском)",
|
| 50 |
+
chatbot=gr.Chatbot(label="Диалог"),
|
| 51 |
+
textbox=gr.Textbox(placeholder="Задай вопрос на русском...", label="Твой вопрос")
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if __name__ == "__main__":
|
| 55 |
+
iface.launch()
|
|
|