Spaces:
Runtime error
Runtime error
File size: 7,281 Bytes
354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f 460480a 354bf5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import pandas as pd
import tempfile
from io import BytesIO
def process_woocommerce_data_in_memory(netcom_file):
"""
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
and returns the resulting CSV as bytes, suitable for download.
"""
# Define the brand-to-logo mapping
brand_logo_map = {
"Amazon Web Services": "https://devthe.tech/wp-content/uploads/2025/02/aws.png",
"Cisco": "https://devthe.tech/wp-content/uploads/2025/02/cisco-e1738593292198-1.webp",
"Microsoft": "https://devthe.tech/wp-content/uploads/2025/01/Microsoft-e1737494120985-1.png"
}
# 1. Read the uploaded CSV into a DataFrame
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
# 2. Create aggregated dates and times for each Course ID
date_agg = (
netcom_df.groupby('Course ID')['Course Start Date']
.apply(lambda x: ','.join(x.astype(str).unique()))
.reset_index(name='Aggregated_Dates')
)
time_agg = (
netcom_df.groupby('Course ID')
.apply(
lambda df: ','.join(
f"{st}-{et} {tz}"
for st, et, tz in zip(df['Course Start Time'],
df['Course End Time'],
df['Time Zone'])
)
)
.reset_index(name='Aggregated_Times')
)
# 3. Extract unique parent products
parent_products = netcom_df.drop_duplicates(subset=['Course ID'])
# 4. Merge aggregated dates and times
parent_products = parent_products.merge(date_agg, on='Course ID', how='left')
parent_products = parent_products.merge(time_agg, on='Course ID', how='left')
# 5. Create parent (variable) products
woo_parent_df = pd.DataFrame({
'Type': 'variable',
'SKU': parent_products['Course ID'],
'Name': parent_products['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': parent_products['Decription'],
'Description': parent_products['Decription'],
'Tax status': 'taxable',
'In stock?': 1,
'Stock': 1,
'Sold individually?': 1,
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
'Parent': '',
'Brands': parent_products['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': parent_products['Aggregated_Dates'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': parent_products['Outline'],
'Meta: days': parent_products['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': parent_products['Target Audience'],
'Meta: objectives': parent_products['Objectives'],
'Meta: prerequisites': parent_products['RequiredPrerequisite'].fillna(''),
'Meta: agenda': parent_products['Outline'] # Agenda now copies the outline
})
# 6. Create child (variation) products
woo_child_df = pd.DataFrame({
'Type': 'variation, virtual',
'SKU': netcom_df['Course SID'],
'Name': netcom_df['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': netcom_df['Decription'],
'Description': netcom_df['Decription'],
'Tax status': 'taxable',
'In stock?': 1,
'Stock': 1,
'Sold individually?': 1,
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
'Parent': netcom_df['Course ID'],
'Brands': netcom_df['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': netcom_df['Course Start Date'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': netcom_df.apply(
lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1
),
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': netcom_df['Outline'],
'Meta: days': netcom_df['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': netcom_df['Target Audience'],
'Meta: objectives': netcom_df['Objectives'],
'Meta: prerequisites': netcom_df['RequiredPrerequisite'].fillna(''),
'Meta: agenda': netcom_df['Outline'] # Agenda now copies the outline
})
# 7. Combine parent + child
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
# 8. Desired column order
column_order = [
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
'Short description', 'Description', 'Tax status', 'In stock?',
'Stock', 'Sold individually?', 'Regular price', 'Categories', 'Images',
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview',
'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda'
]
woo_final_df = woo_final_df[column_order]
# 9. Convert to CSV (in memory)
output_buffer = BytesIO()
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
output_buffer.seek(0)
return output_buffer
def process_file_and_return_csv(uploaded_file):
"""
- Takes the uploaded file,
- Processes it,
- Writes the CSV to a temp file,
- Returns that path for Gradio to provide as a downloadable file.
"""
processed_csv_io = process_woocommerce_data_in_memory(uploaded_file)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(processed_csv_io.getvalue())
tmp.flush() # ensure data is written to disk
temp_path = tmp.name
return temp_path
app = gr.Interface(
fn=process_file_and_return_csv,
inputs=gr.File(label="Upload NetCom CSV", file_types=["text", "csv"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom to WooCommerce CSV Processor",
description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV."
)
if __name__ == "__main__":
app.launch()
|