File size: 7,491 Bytes
354bf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe90c9a
354bf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe90c9a
354bf5f
 
fe90c9a
354bf5f
 
 
fe90c9a
 
 
 
 
354bf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import pandas as pd
from io import BytesIO

def process_woocommerce_data_in_memory(netcom_file):
    """
    Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
    and returns the resulting CSV as bytes, suitable for download.
    """
    # Define the brand-to-logo mapping
    brand_logo_map = {
        "Amazon Web Services": "https://devthe.tech/wp-content/uploads/2025/02/aws.png",
        "Cisco": "https://devthe.tech/wp-content/uploads/2025/02/cisco-e1738593292198-1.webp",
        "Microsoft": "https://devthe.tech/wp-content/uploads/2025/01/Microsoft-e1737494120985-1.png"
    }

    # 1. Read the uploaded CSV into a DataFrame (Gradio provides a tempfile-like object)
    netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
    netcom_df.columns = netcom_df.columns.str.strip()  # standardize column names

    # 2. Create aggregated dates and times for each Course ID
    date_agg = (
        netcom_df.groupby('Course ID')['Course Start Date']
        .apply(lambda x: ','.join(x.astype(str).unique()))
        .reset_index(name='Aggregated_Dates')
    )

    time_agg = (
        netcom_df.groupby('Course ID')
        .apply(
            lambda df: ','.join(
                f"{st}-{et} {tz}"
                for st, et, tz in zip(df['Course Start Time'], 
                                      df['Course End Time'], 
                                      df['Time Zone'])
            )
        )
        .reset_index(name='Aggregated_Times')
    )

    # 3. Extract unique parent products from the NetCom data
    parent_products = netcom_df.drop_duplicates(subset=['Course ID'])

    # 4. Merge aggregated dates and times into the parent product DataFrame
    parent_products = parent_products.merge(date_agg, on='Course ID', how='left')
    parent_products = parent_products.merge(time_agg, on='Course ID', how='left')

    # 5. Create the parent (variable) product DataFrame
    woo_parent_df = pd.DataFrame({
        'Type': 'variable',
        'SKU': parent_products['Course ID'],
        'Name': parent_products['Course Name'],
        'Published': 1,
        'Visibility in catalog': 'visible',
        'Short description': parent_products['Decription'],
        'Description': parent_products['Decription'],
        'Tax status': 'taxable',
        'In stock?': 1,
        'Stock': 1,
        'Sold individually?': 1,
        'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
        'Categories': 'courses',
        'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
        'Parent': '',
        'Brands': parent_products['Vendor'],
        'Attribute 1 name': 'Date',
        'Attribute 1 value(s)': parent_products['Aggregated_Dates'],
        'Attribute 1 visible': 'visible',
        'Attribute 1 global': 1,
        'Attribute 2 name': 'Location',
        'Attribute 2 value(s)': 'Virtual',
        'Attribute 2 visible': 'visible',
        'Attribute 2 global': 1,
        'Attribute 3 name': 'Time',
        'Attribute 3 value(s)': parent_products['Aggregated_Times'],
        'Attribute 3 visible': 'visible',
        'Attribute 3 global': 1,
        'Meta: outline': parent_products['Outline'],
        'Meta: days': parent_products['Duration'],
        'Meta: location': 'Virtual',
        'Meta: overview': parent_products['Target Audience'],
        'Meta: objectives': parent_products['Objectives'],
        'Meta: prerequisites': parent_products['RequiredPrerequisite'].fillna(''),
        'Meta: agenda': parent_products['Outline']  # Agenda now copies the outline
    })

    # 6. Create the child (variation) product DataFrame
    woo_child_df = pd.DataFrame({
        'Type': 'variation, virtual',
        'SKU': netcom_df['Course SID'],
        'Name': netcom_df['Course Name'],
        'Published': 1,
        'Visibility in catalog': 'visible',
        'Short description': netcom_df['Decription'],
        'Description': netcom_df['Decription'],
        'Tax status': 'taxable',
        'In stock?': 1,
        'Stock': 1,
        'Sold individually?': 1,
        'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
        'Categories': 'courses',
        'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
        'Parent': netcom_df['Course ID'],
        'Brands': netcom_df['Vendor'],
        'Attribute 1 name': 'Date',
        'Attribute 1 value(s)': netcom_df['Course Start Date'],
        'Attribute 1 visible': 'visible',
        'Attribute 1 global': 1,
        'Attribute 2 name': 'Location',
        'Attribute 2 value(s)': 'Virtual',
        'Attribute 2 visible': 'visible',
        'Attribute 2 global': 1,
        'Attribute 3 name': 'Time',
        'Attribute 3 value(s)': netcom_df.apply(
            lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1
        ),
        'Attribute 3 visible': 'visible',
        'Attribute 3 global': 1,
        'Meta: outline': netcom_df['Outline'],
        'Meta: days': netcom_df['Duration'],
        'Meta: location': 'Virtual',
        'Meta: overview': netcom_df['Target Audience'],
        'Meta: objectives': netcom_df['Objectives'],
        'Meta: prerequisites': netcom_df['RequiredPrerequisite'].fillna(''),
        'Meta: agenda': netcom_df['Outline']  # Agenda now copies the outline
    })

    # 7. Combine parent and child data
    woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)

    # 8. Define the desired column order (matching WooCommerce import format)
    column_order = [
        'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
        'Short description', 'Description', 'Tax status', 'In stock?',
        'Stock', 'Sold individually?', 'Regular price', 'Categories', 'Images',
        'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
        'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
        'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
        'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview',
        'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda'
    ]
    woo_final_df = woo_final_df[column_order]

    # 9. Convert the final DataFrame to CSV in memory
    output_buffer = BytesIO()
    woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
    output_buffer.seek(0)

    return output_buffer

def process_file_and_return_csv(uploaded_file):
    """
    Gradio wrapper function that:
    - Takes the uploaded file,
    - Processes it,
    - Returns a dictionary that Gradio recognizes as a downloadable file.
    """
    processed_csv_io = process_woocommerce_data_in_memory(uploaded_file)

    # Return a dict with the keys Gradio expects for a File output
    return {
        "name": "WooCommerce_Mapped_Data.csv",
        "data": processed_csv_io.getvalue()
    }

#########################
#       Gradio App      #
#########################

app = gr.Interface(
    fn=process_file_and_return_csv,
    inputs=gr.File(label="Upload NetCom CSV", file_types=["text", "csv"]),
    outputs=gr.File(label="Download WooCommerce CSV"),
    title="NetCom to WooCommerce CSV Processor",
    description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV."
)

if __name__ == "__main__":
    app.launch()