codys12's picture
Update app.py
46a6686 verified
raw
history blame
11.3 kB
import gradio as gr
import pandas as pd
import tempfile
import os
from io import BytesIO
import re
import openai
def process_woocommerce_data_in_memory(netcom_file):
"""
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
and returns the resulting CSV as bytes, suitable for download.
"""
# Define the brand-to-logo mapping with updated URLs
brand_logo_map = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png"
}
# Default prerequisite text for courses without prerequisites
default_prerequisite = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
# 1. Read the uploaded CSV into a DataFrame
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
# Initialize OpenAI client
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Process descriptions in batches of 500
def process_text_with_ai(texts, instruction):
"""Process text with GPT-4o-mini"""
if not texts:
return []
results = []
batch_size = 500
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
batch_results = []
for prompt in batch_prompts:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0
)
batch_results.append(response.choices[0].message.content)
results.extend(batch_results)
return results
# Prepare descriptions for AI processing
descriptions = netcom_df['Decription'].fillna("").tolist()
objectives = netcom_df['Objectives'].fillna("").tolist()
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
agendas = netcom_df['Outline'].fillna("").tolist()
# Process with AI
short_descriptions = process_text_with_ai(
descriptions,
"Create a concise 250-character summary of this course description:"
)
condensed_descriptions = process_text_with_ai(
descriptions,
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
)
formatted_objectives = process_text_with_ai(
objectives,
"Format these objectives into a bullet list format with clean formatting. Start each bullet with '• ':"
)
formatted_prerequisites = []
for prereq in prerequisites:
if not prereq or pd.isna(prereq) or prereq.strip() == "":
formatted_prerequisites.append(default_prerequisite)
else:
formatted_prereq = process_text_with_ai(
[prereq],
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with '• ':"
)[0]
formatted_prerequisites.append(formatted_prereq)
formatted_agendas = process_text_with_ai(
agendas,
"Format this agenda into a bullet list format with clean formatting. Start each bullet with '• ':"
)
# Add processed text to dataframe
netcom_df['Short_Description'] = short_descriptions
netcom_df['Condensed_Description'] = condensed_descriptions
netcom_df['Formatted_Objectives'] = formatted_objectives
netcom_df['Formatted_Prerequisites'] = formatted_prerequisites
netcom_df['Formatted_Agenda'] = formatted_agendas
# 2. Create aggregated dates and times for each Course ID
# Sort by Course ID and date first
netcom_df = netcom_df.sort_values(['Course ID', 'Course Start Date'])
date_agg = (
netcom_df.groupby('Course ID')['Course Start Date']
.apply(lambda x: ','.join(x.astype(str).unique()))
.reset_index(name='Aggregated_Dates')
)
time_agg = (
netcom_df.groupby('Course ID')
.apply(
lambda df: ','.join(
f"{st}-{et} {tz}"
for st, et, tz in zip(df['Course Start Time'],
df['Course End Time'],
df['Time Zone'])
)
)
.reset_index(name='Aggregated_Times')
)
# 3. Extract unique parent products
parent_products = netcom_df.drop_duplicates(subset=['Course ID'])
# 4. Merge aggregated dates and times
parent_products = parent_products.merge(date_agg, on='Course ID', how='left')
parent_products = parent_products.merge(time_agg, on='Course ID', how='left')
# 5. Create parent (variable) products
woo_parent_df = pd.DataFrame({
'Type': 'variable',
'SKU': parent_products['Course ID'],
'Name': parent_products['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': parent_products['Short_Description'],
'Description': parent_products['Condensed_Description'],
'Tax status': 'taxable',
'In stock?': 1,
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
'Parent': '',
'Brands': parent_products['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': parent_products['Aggregated_Dates'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': parent_products['Formatted_Agenda'],
'Meta: days': parent_products['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': parent_products['Target Audience'],
'Meta: objectives': parent_products['Formatted_Objectives'],
'Meta: prerequisites': parent_products['Formatted_Prerequisites'],
'Meta: agenda': parent_products['Formatted_Agenda']
})
# 6. Create child (variation) products
woo_child_df = pd.DataFrame({
'Type': 'variation, virtual',
'SKU': netcom_df['Course SID'],
'Name': netcom_df['Course Name'],
'Published': 1,
'Visibility in catalog': 'visible',
'Short description': netcom_df['Short_Description'],
'Description': netcom_df['Condensed_Description'],
'Tax status': 'taxable',
'In stock?': 1,
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
'Categories': 'courses',
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
'Parent': netcom_df['Course ID'],
'Brands': netcom_df['Vendor'],
'Attribute 1 name': 'Date',
'Attribute 1 value(s)': netcom_df['Course Start Date'],
'Attribute 1 visible': 'visible',
'Attribute 1 global': 1,
'Attribute 2 name': 'Location',
'Attribute 2 value(s)': 'Virtual',
'Attribute 2 visible': 'visible',
'Attribute 2 global': 1,
'Attribute 3 name': 'Time',
'Attribute 3 value(s)': netcom_df.apply(
lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1
),
'Attribute 3 visible': 'visible',
'Attribute 3 global': 1,
'Meta: outline': netcom_df['Formatted_Agenda'],
'Meta: days': netcom_df['Duration'],
'Meta: location': 'Virtual',
'Meta: overview': netcom_df['Target Audience'],
'Meta: objectives': netcom_df['Formatted_Objectives'],
'Meta: prerequisites': netcom_df['Formatted_Prerequisites'],
'Meta: agenda': netcom_df['Formatted_Agenda']
})
# 7. Combine parent + child
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
# 8. Desired column order (removed Stock and Sold individually?)
column_order = [
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
'Short description', 'Description', 'Tax status', 'In stock?',
'Regular price', 'Categories', 'Images',
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview',
'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda'
]
woo_final_df = woo_final_df[column_order]
# 9. Convert to CSV (in memory)
output_buffer = BytesIO()
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
output_buffer.seek(0)
return output_buffer
def process_woocommerce_data_in_memory(netcom_file):
"""
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
and returns the resulting CSV as bytes, suitable for download.
"""
# [Keep all your existing processing code exactly the same until the end]
# 9. Convert to CSV (in memory)
output_buffer = BytesIO()
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
output_buffer.seek(0)
return output_buffer
def process_file(uploaded_file):
"""
Takes the uploaded file, processes it, and returns the CSV as a file-like object
"""
processed_csv_io = process_woocommerce_data_in_memory(uploaded_file)
return processed_csv_io
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom to WooCommerce CSV Processor",
description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV."
)
if __name__ == "__main__":
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("Warning: OPENAI_API_KEY environment variable not set")
interface.launch()