Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,116 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import tempfile
|
|
|
|
| 4 |
from io import BytesIO
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def process_woocommerce_data_in_memory(netcom_file):
|
| 7 |
"""
|
| 8 |
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
|
| 9 |
and returns the resulting CSV as bytes, suitable for download.
|
| 10 |
"""
|
| 11 |
-
# Define the brand-to-logo mapping
|
| 12 |
brand_logo_map = {
|
| 13 |
-
"Amazon Web Services": "
|
| 14 |
-
"Cisco": "
|
| 15 |
-
"Microsoft": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
}
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
# 1. Read the uploaded CSV into a DataFrame
|
| 19 |
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
|
| 20 |
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# 2. Create aggregated dates and times for each Course ID
|
|
|
|
|
|
|
|
|
|
| 23 |
date_agg = (
|
| 24 |
netcom_df.groupby('Course ID')['Course Start Date']
|
| 25 |
.apply(lambda x: ','.join(x.astype(str).unique()))
|
|
@@ -53,12 +144,10 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 53 |
'Name': parent_products['Course Name'],
|
| 54 |
'Published': 1,
|
| 55 |
'Visibility in catalog': 'visible',
|
| 56 |
-
'Short description': parent_products['
|
| 57 |
-
'Description': parent_products['
|
| 58 |
'Tax status': 'taxable',
|
| 59 |
'In stock?': 1,
|
| 60 |
-
'Stock': 1,
|
| 61 |
-
'Sold individually?': 1,
|
| 62 |
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
|
| 63 |
'Categories': 'courses',
|
| 64 |
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
|
|
@@ -76,13 +165,13 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 76 |
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
|
| 77 |
'Attribute 3 visible': 'visible',
|
| 78 |
'Attribute 3 global': 1,
|
| 79 |
-
'Meta: outline': parent_products['
|
| 80 |
'Meta: days': parent_products['Duration'],
|
| 81 |
'Meta: location': 'Virtual',
|
| 82 |
'Meta: overview': parent_products['Target Audience'],
|
| 83 |
-
'Meta: objectives': parent_products['
|
| 84 |
-
'Meta: prerequisites': parent_products['
|
| 85 |
-
'Meta: agenda': parent_products['
|
| 86 |
})
|
| 87 |
|
| 88 |
# 6. Create child (variation) products
|
|
@@ -92,12 +181,10 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 92 |
'Name': netcom_df['Course Name'],
|
| 93 |
'Published': 1,
|
| 94 |
'Visibility in catalog': 'visible',
|
| 95 |
-
'Short description': netcom_df['
|
| 96 |
-
'Description': netcom_df['
|
| 97 |
'Tax status': 'taxable',
|
| 98 |
'In stock?': 1,
|
| 99 |
-
'Stock': 1,
|
| 100 |
-
'Sold individually?': 1,
|
| 101 |
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
|
| 102 |
'Categories': 'courses',
|
| 103 |
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
|
|
@@ -117,23 +204,23 @@ def process_woocommerce_data_in_memory(netcom_file):
|
|
| 117 |
),
|
| 118 |
'Attribute 3 visible': 'visible',
|
| 119 |
'Attribute 3 global': 1,
|
| 120 |
-
'Meta: outline': netcom_df['
|
| 121 |
'Meta: days': netcom_df['Duration'],
|
| 122 |
'Meta: location': 'Virtual',
|
| 123 |
'Meta: overview': netcom_df['Target Audience'],
|
| 124 |
-
'Meta: objectives': netcom_df['
|
| 125 |
-
'Meta: prerequisites': netcom_df['
|
| 126 |
-
'Meta: agenda': netcom_df['
|
| 127 |
})
|
| 128 |
|
| 129 |
# 7. Combine parent + child
|
| 130 |
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
|
| 131 |
|
| 132 |
-
# 8. Desired column order
|
| 133 |
column_order = [
|
| 134 |
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
|
| 135 |
'Short description', 'Description', 'Tax status', 'In stock?',
|
| 136 |
-
'
|
| 137 |
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
|
| 138 |
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
|
| 139 |
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
|
|
@@ -174,4 +261,5 @@ app = gr.Interface(
|
|
| 174 |
)
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
|
|
|
| 177 |
app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import tempfile
|
| 4 |
+
import os
|
| 5 |
from io import BytesIO
|
| 6 |
+
import re
|
| 7 |
+
import openai
|
| 8 |
|
| 9 |
def process_woocommerce_data_in_memory(netcom_file):
|
| 10 |
"""
|
| 11 |
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
|
| 12 |
and returns the resulting CSV as bytes, suitable for download.
|
| 13 |
"""
|
| 14 |
+
# Define the brand-to-logo mapping with updated URLs
|
| 15 |
brand_logo_map = {
|
| 16 |
+
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
| 17 |
+
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
| 18 |
+
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
| 19 |
+
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
| 20 |
+
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
| 21 |
+
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
| 22 |
+
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
| 23 |
+
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
| 24 |
+
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
| 25 |
+
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
| 26 |
+
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png"
|
| 27 |
}
|
| 28 |
|
| 29 |
+
# Default prerequisite text for courses without prerequisites
|
| 30 |
+
default_prerequisite = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
|
| 31 |
+
|
| 32 |
# 1. Read the uploaded CSV into a DataFrame
|
| 33 |
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
|
| 34 |
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
|
| 35 |
|
| 36 |
+
# Initialize OpenAI client
|
| 37 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 38 |
+
|
| 39 |
+
# Process descriptions in batches of 500
|
| 40 |
+
def process_text_with_ai(texts, instruction):
|
| 41 |
+
"""Process text with GPT-4o-mini"""
|
| 42 |
+
if not texts:
|
| 43 |
+
return []
|
| 44 |
+
|
| 45 |
+
results = []
|
| 46 |
+
batch_size = 500
|
| 47 |
+
|
| 48 |
+
for i in range(0, len(texts), batch_size):
|
| 49 |
+
batch = texts[i:i+batch_size]
|
| 50 |
+
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
|
| 51 |
+
|
| 52 |
+
batch_results = []
|
| 53 |
+
for prompt in batch_prompts:
|
| 54 |
+
response = client.chat.completions.create(
|
| 55 |
+
model="gpt-4o-mini",
|
| 56 |
+
messages=[{"role": "user", "content": prompt}],
|
| 57 |
+
temperature=0
|
| 58 |
+
)
|
| 59 |
+
batch_results.append(response.choices[0].message.content)
|
| 60 |
+
|
| 61 |
+
results.extend(batch_results)
|
| 62 |
+
|
| 63 |
+
return results
|
| 64 |
+
|
| 65 |
+
# Prepare descriptions for AI processing
|
| 66 |
+
descriptions = netcom_df['Decription'].fillna("").tolist()
|
| 67 |
+
objectives = netcom_df['Objectives'].fillna("").tolist()
|
| 68 |
+
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
|
| 69 |
+
agendas = netcom_df['Outline'].fillna("").tolist()
|
| 70 |
+
|
| 71 |
+
# Process with AI
|
| 72 |
+
short_descriptions = process_text_with_ai(
|
| 73 |
+
descriptions,
|
| 74 |
+
"Create a concise 250-character summary of this course description:"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
condensed_descriptions = process_text_with_ai(
|
| 78 |
+
descriptions,
|
| 79 |
+
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
formatted_objectives = process_text_with_ai(
|
| 83 |
+
objectives,
|
| 84 |
+
"Format these objectives into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
formatted_prerequisites = []
|
| 88 |
+
for prereq in prerequisites:
|
| 89 |
+
if not prereq or pd.isna(prereq) or prereq.strip() == "":
|
| 90 |
+
formatted_prerequisites.append(default_prerequisite)
|
| 91 |
+
else:
|
| 92 |
+
formatted_prereq = process_text_with_ai(
|
| 93 |
+
[prereq],
|
| 94 |
+
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 95 |
+
)[0]
|
| 96 |
+
formatted_prerequisites.append(formatted_prereq)
|
| 97 |
+
|
| 98 |
+
formatted_agendas = process_text_with_ai(
|
| 99 |
+
agendas,
|
| 100 |
+
"Format this agenda into a bullet list format with clean formatting. Start each bullet with '• ':"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Add processed text to dataframe
|
| 104 |
+
netcom_df['Short_Description'] = short_descriptions
|
| 105 |
+
netcom_df['Condensed_Description'] = condensed_descriptions
|
| 106 |
+
netcom_df['Formatted_Objectives'] = formatted_objectives
|
| 107 |
+
netcom_df['Formatted_Prerequisites'] = formatted_prerequisites
|
| 108 |
+
netcom_df['Formatted_Agenda'] = formatted_agendas
|
| 109 |
+
|
| 110 |
# 2. Create aggregated dates and times for each Course ID
|
| 111 |
+
# Sort by Course ID and date first
|
| 112 |
+
netcom_df = netcom_df.sort_values(['Course ID', 'Course Start Date'])
|
| 113 |
+
|
| 114 |
date_agg = (
|
| 115 |
netcom_df.groupby('Course ID')['Course Start Date']
|
| 116 |
.apply(lambda x: ','.join(x.astype(str).unique()))
|
|
|
|
| 144 |
'Name': parent_products['Course Name'],
|
| 145 |
'Published': 1,
|
| 146 |
'Visibility in catalog': 'visible',
|
| 147 |
+
'Short description': parent_products['Short_Description'],
|
| 148 |
+
'Description': parent_products['Condensed_Description'],
|
| 149 |
'Tax status': 'taxable',
|
| 150 |
'In stock?': 1,
|
|
|
|
|
|
|
| 151 |
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
|
| 152 |
'Categories': 'courses',
|
| 153 |
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
|
|
|
|
| 165 |
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
|
| 166 |
'Attribute 3 visible': 'visible',
|
| 167 |
'Attribute 3 global': 1,
|
| 168 |
+
'Meta: outline': parent_products['Formatted_Agenda'],
|
| 169 |
'Meta: days': parent_products['Duration'],
|
| 170 |
'Meta: location': 'Virtual',
|
| 171 |
'Meta: overview': parent_products['Target Audience'],
|
| 172 |
+
'Meta: objectives': parent_products['Formatted_Objectives'],
|
| 173 |
+
'Meta: prerequisites': parent_products['Formatted_Prerequisites'],
|
| 174 |
+
'Meta: agenda': parent_products['Formatted_Agenda']
|
| 175 |
})
|
| 176 |
|
| 177 |
# 6. Create child (variation) products
|
|
|
|
| 181 |
'Name': netcom_df['Course Name'],
|
| 182 |
'Published': 1,
|
| 183 |
'Visibility in catalog': 'visible',
|
| 184 |
+
'Short description': netcom_df['Short_Description'],
|
| 185 |
+
'Description': netcom_df['Condensed_Description'],
|
| 186 |
'Tax status': 'taxable',
|
| 187 |
'In stock?': 1,
|
|
|
|
|
|
|
| 188 |
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
|
| 189 |
'Categories': 'courses',
|
| 190 |
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
|
|
|
|
| 204 |
),
|
| 205 |
'Attribute 3 visible': 'visible',
|
| 206 |
'Attribute 3 global': 1,
|
| 207 |
+
'Meta: outline': netcom_df['Formatted_Agenda'],
|
| 208 |
'Meta: days': netcom_df['Duration'],
|
| 209 |
'Meta: location': 'Virtual',
|
| 210 |
'Meta: overview': netcom_df['Target Audience'],
|
| 211 |
+
'Meta: objectives': netcom_df['Formatted_Objectives'],
|
| 212 |
+
'Meta: prerequisites': netcom_df['Formatted_Prerequisites'],
|
| 213 |
+
'Meta: agenda': netcom_df['Formatted_Agenda']
|
| 214 |
})
|
| 215 |
|
| 216 |
# 7. Combine parent + child
|
| 217 |
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
|
| 218 |
|
| 219 |
+
# 8. Desired column order (removed Stock and Sold individually?)
|
| 220 |
column_order = [
|
| 221 |
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
|
| 222 |
'Short description', 'Description', 'Tax status', 'In stock?',
|
| 223 |
+
'Regular price', 'Categories', 'Images',
|
| 224 |
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
|
| 225 |
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
|
| 226 |
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
if __name__ == "__main__":
|
| 264 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 265 |
app.launch()
|