Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,223 +12,125 @@ import gradio_client.utils
|
|
12 |
|
13 |
"""NetCom → WooCommerce transformer (Try 1 schema)
|
14 |
=================================================
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
*
|
22 |
-
* GPT‑4o mini used with a tiny disk cache (`ai_response_cache/`).
|
23 |
-
* Brand → logo URLs hard‑coded below (update when media library changes).
|
24 |
"""
|
25 |
-
|
26 |
-
#
|
27 |
-
# Gradio JSON‑schema helper hot‑patch (bool schema bug)
|
28 |
-
# ---------------------------------------------------------------------------
|
29 |
_original = gradio_client.utils._json_schema_to_python_type
|
30 |
|
31 |
def _fixed_json_schema_to_python_type(schema, defs=None):
|
32 |
-
if isinstance(schema, bool):
|
33 |
return "any"
|
34 |
return _original(schema, defs)
|
35 |
|
36 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
37 |
|
38 |
-
#
|
39 |
-
# Tiny disk cache for OpenAI responses
|
40 |
-
# ---------------------------------------------------------------------------
|
41 |
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
|
42 |
|
|
|
|
|
43 |
|
44 |
-
def
|
45 |
-
return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"
|
46 |
-
|
47 |
-
|
48 |
-
def _get_cached(prompt: str):
|
49 |
try:
|
50 |
-
return json.loads(_cache_path(
|
51 |
except Exception:
|
52 |
return None
|
53 |
|
54 |
-
|
55 |
-
def _set_cache(prompt: str, rsp: str):
|
56 |
try:
|
57 |
-
_cache_path(
|
58 |
except Exception:
|
59 |
pass
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
if cached is not None:
|
67 |
-
return cached
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
messages=[{"role": "user", "content": prompt}],
|
72 |
-
temperature=0,
|
73 |
-
)
|
74 |
-
txt = cmp.choices[0].message.content
|
75 |
except Exception as e:
|
76 |
-
|
77 |
-
_set_cache(prompt,
|
78 |
-
return
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
for i, t in enumerate(texts):
|
86 |
-
if isinstance(t, str) and t.strip():
|
87 |
-
idx.append(i); prompts.append(f"{instruction}\n\nText: {t}")
|
88 |
-
if not prompts:
|
89 |
-
return res
|
90 |
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
"
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"
|
114 |
-
"
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
)
|
121 |
-
# Load NetCom CSV
|
122 |
-
df = pd.read_csv(netcom_file.name, encoding="latin1"); df.columns = df.columns.str.strip()
|
123 |
-
def _col(opts):
|
124 |
-
return next((c for c in opts if c in df.columns), None)
|
125 |
-
# Column aliases
|
126 |
-
col_desc = _col(["Description", "Decription"])
|
127 |
-
col_obj = _col(["Objectives", "objectives"])
|
128 |
-
col_pre = _col(["RequiredPrerequisite", "Required Pre-requisite"])
|
129 |
-
col_out = _col(["Outline"])
|
130 |
-
col_dur = _col(["Duration"])
|
131 |
-
col_sid = _col(["Course SID", "Course SID"])
|
132 |
-
if col_dur is None:
|
133 |
-
df["Duration"] = ""; col_dur = "Duration"
|
134 |
-
# AI prep lists
|
135 |
-
descs, objs, pres, outs = (df.get(c, pd.Series([""]*len(df))).fillna("").tolist() for c in (col_desc, col_obj, col_pre, col_out))
|
136 |
-
loop = asyncio.new_event_loop(); asyncio.set_event_loop(loop)
|
137 |
-
short_d, long_d, fmt_obj, fmt_out = loop.run_until_complete(asyncio.gather(
|
138 |
-
_batch(descs, "Create a concise 250-character summary of this course description:"),
|
139 |
-
_batch(descs, "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
|
140 |
-
_batch(objs, "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':"),
|
141 |
-
_batch(outs, "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':"),
|
142 |
-
)); loop.close()
|
143 |
-
fmt_pre = [default_prereq if not str(p).strip() else asyncio.run(_batch([p], "Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in pres]
|
144 |
-
# Attach processed cols
|
145 |
-
df["Short_Description"] = short_d; df["Condensed_Description"] = long_d
|
146 |
-
df["Formatted_Objectives"] = fmt_obj; df["Formatted_Agenda"] = fmt_out; df["Formatted_Prerequisites"] = fmt_pre
|
147 |
-
# Dates
|
148 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
149 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
parents =
|
154 |
-
# Parent rows
|
155 |
-
woo_parent = pd.DataFrame({
|
156 |
-
"Type": "variable",
|
157 |
-
"SKU": parents["Course ID"],
|
158 |
-
"Name": parents["Course Name"],
|
159 |
-
"Published": 1,
|
160 |
-
"Visibility in catalog": "visible",
|
161 |
-
"Short description": parents["Short_Description"],
|
162 |
-
"Description": parents["Condensed_Description"],
|
163 |
-
"Tax status": "taxable",
|
164 |
-
"In stock?": 1,
|
165 |
-
"Stock": 1,
|
166 |
-
"Sold individually?": 1,
|
167 |
-
"Regular price": parents["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
168 |
-
"Categories": "courses",
|
169 |
-
"Images": parents["Vendor"].map(brand_logo_map).fillna(""),
|
170 |
-
"Parent": "",
|
171 |
-
"Brands": parents["Vendor"],
|
172 |
-
# Attributes
|
173 |
-
"Attribute 1 name": "Date", "Attribute 1 value(s)": parents["Aggregated_Dates"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
|
174 |
-
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
|
175 |
-
"Attribute 3 name": "Time", "Attribute 3 value(s)": parents["Aggregated_Times"], "Attribute 3 visible": "visible", "Attribute 3 global": 1,
|
176 |
-
# Meta
|
177 |
-
"Meta: outline": parents["Formatted_Agenda"], "Meta: days": parents[col_dur], "Meta: location": "Virtual",
|
178 |
-
"Meta: overview": parents["Target Audience"], "Meta: objectives": parents["Formatted_Objectives"],
|
179 |
-
"Meta: prerequisites": parents["Formatted_Prerequisites"], "Meta: agenda": parents["Formatted_Agenda"],
|
180 |
-
})
|
181 |
-
# Child rows
|
182 |
-
woo_child = pd.DataFrame({
|
183 |
-
"Type": "variation, virtual",
|
184 |
-
"SKU": df_sorted[col_sid].astype(str).str.strip(),
|
185 |
-
"Name": df_sorted["Course Name"],
|
186 |
-
"Published": 1,
|
187 |
-
"Visibility in catalog": "visible",
|
188 |
-
"Short description": df_sorted["Short_Description"],
|
189 |
-
"Description": df_sorted["Condensed_Description"],
|
190 |
-
"Tax status": "taxable",
|
191 |
-
"In stock?": 1,
|
192 |
-
"Stock": 1,
|
193 |
-
"Sold individually?": 1,
|
194 |
-
"Regular price": df_sorted["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
195 |
-
"Categories": "courses",
|
196 |
-
"Images": df_sorted["Vendor"].map(brand_logo_map).fillna(""),
|
197 |
-
"Parent": df_sorted["Course ID"],
|
198 |
-
"Brands": df_sorted["Vendor"],
|
199 |
-
"Attribute 1 name": "Date", "Attribute 1 value(s)": df_sorted["Date_fmt"], "Attribute 1 visible": "visible", "Attribute 1 global": 1,
|
200 |
-
"Attribute 2 name": "Location", "Attribute 2 value(s)": "Virtual", "Attribute 2 visible": "visible", "Attribute 2 global": 1,
|
201 |
-
"Attribute 3 name": "Time", "Attribute 3 value(s)": df_sorted.apply(lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}", axis=1), "Attribute 3 visible": "visible", "Attribute 3 global": 1,
|
202 |
-
"Meta: outline": df_sorted["Formatted_Agenda"], "Meta: days": df_sorted[col_dur], "Meta: location": "Virtual",
|
203 |
-
"Meta: overview": df_sorted["Target Audience"], "Meta: objectives": df_sorted["Formatted_Objectives"],
|
204 |
-
"Meta: prerequisites": df_sorted["Formatted_Prerequisites"], "Meta: agenda": df_sorted["Formatted_Agenda"],
|
205 |
-
})
|
206 |
-
# Combine & order
|
207 |
-
combined = pd.concat([woo_parent, woo_child], ignore_index=True)
|
208 |
-
column_order = [
|
209 |
-
"Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands", "Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"
|
210 |
-
]
|
211 |
-
combined = combined[column_order]
|
212 |
-
buf = BytesIO(); combined.to_csv(buf, index=False, encoding="utf-8-sig"); buf.seek(0); return buf
|
213 |
-
|
214 |
-
# ---------------------------------------------------------------------------
|
215 |
-
# Gradio wrapper
|
216 |
-
# ---------------------------------------------------------------------------
|
217 |
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
fn=process_file,
|
224 |
-
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
|
225 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
226 |
title="NetCom → WooCommerce CSV Processor",
|
227 |
-
description="Upload
|
228 |
analytics_enabled=False,
|
229 |
)
|
230 |
|
231 |
if __name__ == "__main__":
|
232 |
if not os.getenv("OPENAI_API_KEY"):
|
233 |
-
print("⚠️ OPENAI_API_KEY not set – AI
|
234 |
-
|
|
|
12 |
|
13 |
"""NetCom → WooCommerce transformer (Try 1 schema)
|
14 |
=================================================
|
15 |
+
*Accept CSV **or** Excel schedule files and output the WooCommerce CSV.*
|
16 |
+
|
17 |
+
Fixes vs last run
|
18 |
+
-----------------
|
19 |
+
* Output written to a **temporary file path** (Gradio BytesIO bug fixed).
|
20 |
+
* **Excel upload** support.
|
21 |
+
* **Pandas future‑warning** silenced (`group_keys=False`).
|
|
|
|
|
22 |
"""
|
23 |
+
|
24 |
+
# -------- Gradio bool‑schema hot‑patch --------------------------------------
|
|
|
|
|
25 |
_original = gradio_client.utils._json_schema_to_python_type
|
26 |
|
27 |
def _fixed_json_schema_to_python_type(schema, defs=None):
|
28 |
+
if isinstance(schema, bool):
|
29 |
return "any"
|
30 |
return _original(schema, defs)
|
31 |
|
32 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
33 |
|
34 |
+
# -------- Tiny disk cache ----------------------------------------------------
|
|
|
|
|
35 |
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
|
36 |
|
37 |
+
def _cache_path(p: str):
|
38 |
+
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
39 |
|
40 |
+
def _get_cached(p: str):
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
+
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
|
43 |
except Exception:
|
44 |
return None
|
45 |
|
46 |
+
def _set_cache(p: str, r: str):
|
|
|
47 |
try:
|
48 |
+
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
49 |
except Exception:
|
50 |
pass
|
51 |
|
52 |
+
# -------- Async GPT helpers --------------------------------------------------
|
53 |
+
async def _gpt(client, prompt):
|
54 |
+
c = _get_cached(prompt)
|
55 |
+
if c is not None:
|
56 |
+
return c
|
|
|
|
|
57 |
try:
|
58 |
+
msg = await client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0)
|
59 |
+
text = msg.choices[0].message.content
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
+
text = f"Error: {e}"
|
62 |
+
_set_cache(prompt, text)
|
63 |
+
return text
|
64 |
+
|
65 |
+
async def _batch(lst, instr):
|
66 |
+
out = ["" for _ in lst]; idx,prompts=[],[]
|
67 |
+
for i,t in enumerate(lst):
|
68 |
+
if isinstance(t,str) and t.strip(): idx.append(i); prompts.append(f"{instr}\n\nText: {t}")
|
69 |
+
if not prompts: return out
|
|
|
|
|
|
|
|
|
|
|
70 |
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
71 |
+
res = await asyncio.gather(*[_gpt(client,p) for p in prompts])
|
72 |
+
for j,val in enumerate(res): out[idx[j]] = val
|
73 |
+
return out
|
74 |
+
|
75 |
+
# -------- Core converter -----------------------------------------------------
|
76 |
+
|
77 |
+
def _read(path: str):
|
78 |
+
return pd.read_excel(path) if path.lower().endswith((".xlsx",".xls")) else pd.read_csv(path, encoding="latin1")
|
79 |
+
|
80 |
+
def convert(path: str) -> BytesIO:
|
81 |
+
logos = {"Amazon Web Services":"/wp-content/uploads/2025/04/aws.png","Cisco":"/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp","Microsoft":"/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png","Google Cloud":"/wp-content/uploads/2025/04/Google_Cloud.png","EC Council":"/wp-content/uploads/2025/04/Ec_Council.png","ITIL":"/wp-content/uploads/2025/04/ITIL.webp","PMI":"/wp-content/uploads/2025/04/PMI.png","Comptia":"/wp-content/uploads/2025/04/Comptia.png","Autodesk":"/wp-content/uploads/2025/04/autodesk.png","ISC2":"/wp-content/uploads/2025/04/ISC2.png","AICerts":"/wp-content/uploads/2025/04/aicerts-logo-1.png"}
|
82 |
+
default_pre = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
|
83 |
+
|
84 |
+
df = _read(path); df.columns = df.columns.str.strip()
|
85 |
+
c = lambda *o: next((x for x in o if x in df.columns), None)
|
86 |
+
dcol, ocol, pcol, acol, dur, sid = c("Description","Decription"), c("Objectives","objectives"), c("RequiredPrerequisite","Required Pre-requisite"), c("Outline"), c("Duration"), c("Course SID","Course SID")
|
87 |
+
if dur is None: df["Duration"]=""; dur="Duration"
|
88 |
+
|
89 |
+
loop=asyncio.new_event_loop(); asyncio.set_event_loop(loop)
|
90 |
+
sdesc, ldesc, fobj, fout = loop.run_until_complete(asyncio.gather(
|
91 |
+
_batch(df.get(dcol,"").fillna("").tolist(), "Create a concise 250-character summary of this course description:"),
|
92 |
+
_batch(df.get(dcol,"").fillna("").tolist(), "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"),
|
93 |
+
_batch(df.get(ocol,"").fillna("").tolist(), "Format these objectives into a bullet list with clean formatting. Start each bullet with '• ':") ,
|
94 |
+
_batch(df.get(acol,"").fillna("").tolist(), "Format this agenda into a bullet list with clean formatting. Start each bullet with '• ':")))
|
95 |
+
loop.close()
|
96 |
+
fpre=[default_pre if not str(p).strip() else asyncio.run(_batch([p],"Format these prerequisites into a bullet list with clean formatting. Start each bullet with '• ':"))[0] for p in df.get(pcol,"").fillna("").tolist()]
|
97 |
+
|
98 |
+
df["Short_Description"],df["Condensed_Description"],df["Formatted_Objectives"],df["Formatted_Agenda"],df["Formatted_Prerequisites"] = sdesc,ldesc,fobj,fout,fpre
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
101 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
102 |
+
dsorted=df.sort_values(["Course ID","Course Start Date"])
|
103 |
+
d_agg = dsorted.groupby("Course ID")["Date_fmt"].apply(lambda s: ",".join(s.dropna().unique())).reset_index(name="Dates")
|
104 |
+
t_agg = dsorted.groupby("Course ID",group_keys=False).apply(lambda g: ",".join(f"{st}-{et} {tz}" for st,et,tz in zip(g["Course Start Time"],g["Course End Time"],g["Time Zone"]))).reset_index(name="Times")
|
105 |
+
parents = dsorted.drop_duplicates("Course ID").merge(d_agg).merge(t_agg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
parent = pd.DataFrame({
|
108 |
+
"Type":"variable","SKU":parents["Course ID"],"Name":parents["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":parents["Short_Description"],"Description":parents["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":parents["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":parents["Vendor"].map(logos).fillna(""),"Parent":"","Brands":parents["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":parents["Dates"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":parents["Times"],"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":parents["Formatted_Agenda"],"Meta: days":parents[dur],"Meta: location":"Virtual","Meta: overview":parents["Target Audience"],"Meta: objectives":parents["Formatted_Objectives"],"Meta: prerequisites":parents["Formatted_Prerequisites"],"Meta: agenda":parents["Formatted_Agenda"]})
|
109 |
+
child = pd.DataFrame({
|
110 |
+
"Type":"variation, virtual","SKU":dsorted[sid].astype(str).str.strip(),"Name":dsorted["Course Name"],"Published":1,"Visibility in catalog":"visible","Short description":dsorted["Short_Description"],"Description":dsorted["Condensed_Description"],"Tax status":"taxable","In stock?":1,"Stock":1,"Sold individually?":1,"Regular price":dsorted["SRP Pricing"].replace("[\\$,]","",regex=True),"Categories":"courses","Images":dsorted["Vendor"].map(logos).fillna(""),"Parent":dsorted["Course ID"],"Brands":dsorted["Vendor"],"Attribute 1 name":"Date","Attribute 1 value(s)":dsorted["Date_fmt"],"Attribute 1 visible":"visible","Attribute 1 global":1,"Attribute 2 name":"Location","Attribute 2 value(s)":"Virtual","Attribute 2 visible":"visible","Attribute 2 global":1,"Attribute 3 name":"Time","Attribute 3 value(s)":dsorted.apply(lambda r:f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",axis=1),"Attribute 3 visible":"visible","Attribute 3 global":1,"Meta: outline":dsorted["Formatted_Agenda"],"Meta: days":dsorted[dur],"Meta: location":"Virtual","Meta: overview":dsorted["Target Audience"],"Meta: objectives":dsorted["Formatted_Objectives"],"Meta: prerequisites":dsorted["Formatted_Prerequisites"],"Meta: agenda":dsorted["Formatted_Agenda"]})
|
111 |
+
|
112 |
+
all_rows = pd.concat([parent,child],ignore_index=True)
|
113 |
+
order=["Type","SKU","Name","Published","Visibility in catalog","Short description","Description","Tax status","In stock?","Stock","Sold individually?","Regular price","Categories","Images","Parent","Brands","Attribute 1 name","Attribute 1 value(s)","Attribute 1 visible","Attribute 1 global","Attribute 2 name","Attribute 2 value(s)","Attribute 2 visible","Attribute 2 global","Attribute 3 name","Attribute 3 value(s)","Attribute 3 visible","Attribute 3 global","Meta: outline","Meta: days","Meta: location","Meta: overview","Meta: objectives","Meta: prerequisites","Meta: agenda"]
|
114 |
+
out=BytesIO(); all_rows[order].to_csv(out,index=False,encoding="utf-8-sig"); out.seek(0); return out
|
115 |
|
116 |
+
# -------- Gradio wrappers ----------------------------------------------------
|
117 |
+
|
118 |
+
def process_file(upload):
|
119 |
+
csv_bytes = convert(upload.name)
|
120 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
121 |
+
tmp.write(csv_bytes.getvalue()); path = tmp.name
|
122 |
+
return path
|
123 |
|
124 |
+
ui = gr.Interface(
|
125 |
fn=process_file,
|
126 |
+
inputs=gr.File(label="Upload NetCom CSV / Excel", file_types=[".csv",".xlsx",".xls"]),
|
127 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
128 |
title="NetCom → WooCommerce CSV Processor",
|
129 |
+
description="Upload NetCom schedule (.csv/.xlsx) to get the Try 1‑formatted WooCommerce CSV.",
|
130 |
analytics_enabled=False,
|
131 |
)
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
if not os.getenv("OPENAI_API_KEY"):
|
135 |
+
print("⚠️ OPENAI_API_KEY not set – AI features will error")
|
136 |
+
ui.launch()
|