Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,413 +1,363 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
|
4 |
-
"""
|
5 |
-
*NetCom β WooCommerce CSV/Excel Processor*
|
6 |
-
Robust edition β catches and logs every recoverable error so one failure never
|
7 |
-
brings the whole pipeline down. Only small, surgical changes were made.
|
8 |
-
"""
|
9 |
-
|
10 |
import gradio as gr
|
11 |
import pandas as pd
|
12 |
import tempfile
|
13 |
-
import os
|
14 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from pathlib import Path
|
|
|
16 |
from functools import lru_cache
|
17 |
-
import openai
|
18 |
-
import gradio_client.utils
|
19 |
|
20 |
-
|
21 |
-
def _log(err: Exception, msg: str = ""):
|
22 |
-
"""Log errors without stopping execution."""
|
23 |
-
print(f"[WARN] {msg}: {err}", file=sys.stderr)
|
24 |
-
traceback.print_exception(err)
|
25 |
|
26 |
-
# Patch: tolerate bad JSON-schemas produced by some OpenAI tools
|
27 |
_original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
|
|
|
28 |
def _fixed_json_schema_to_python_type(schema, defs=None):
|
29 |
-
|
30 |
-
|
31 |
-
return "any"
|
32 |
-
return _original_json_schema_to_python_type(schema, defs)
|
33 |
-
except Exception as e: # last-chance fallback
|
34 |
-
_log(e, "json_schema_to_python_type failed")
|
35 |
return "any"
|
|
|
|
|
36 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def get_cached_response(prompt):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
return None
|
51 |
|
52 |
def cache_response(prompt, response):
|
|
|
|
|
53 |
try:
|
54 |
-
|
55 |
-
json.
|
56 |
-
)
|
57 |
except Exception as e:
|
58 |
-
|
59 |
|
60 |
-
# ββββββββββββββββββββββββββββββ OPENAI ββββββββββββββββββββββββββββββ
|
61 |
-
async def _call_openai(client, prompt):
|
62 |
-
"""Single protected OpenAI call."""
|
63 |
-
try:
|
64 |
-
rsp = await client.chat.completions.create(
|
65 |
-
model="gpt-4o-mini",
|
66 |
-
messages=[{"role": "user", "content": prompt}],
|
67 |
-
temperature=0,
|
68 |
-
)
|
69 |
-
return rsp.choices[0].message.content
|
70 |
-
except Exception as e:
|
71 |
-
_log(e, "OpenAI error")
|
72 |
-
return f"Error: {e}"
|
73 |
|
74 |
-
async def process_text_batch_async(client,
|
75 |
-
"""
|
76 |
-
results
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
for prompt, task in zip([p for p in prompts if p not in results], tasks):
|
85 |
-
try:
|
86 |
-
res = await task
|
87 |
-
except Exception as e:
|
88 |
-
_log(e, "async OpenAI task")
|
89 |
-
res = f"Error: {e}"
|
90 |
-
cache_response(prompt, res)
|
91 |
-
results[prompt] = res
|
92 |
-
return [results[p] for p in prompts]
|
93 |
|
94 |
async def process_text_with_ai_async(texts, instruction):
|
|
|
95 |
if not texts:
|
96 |
return []
|
|
|
|
|
|
|
|
|
|
|
97 |
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
98 |
-
|
|
|
99 |
for i in range(0, len(texts), batch_size):
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
try:
|
108 |
-
# brand β logo mapping
|
109 |
-
brand_logo = {
|
110 |
-
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
111 |
-
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
112 |
-
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
113 |
-
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
114 |
-
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
115 |
-
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
116 |
-
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
117 |
-
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
118 |
-
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
119 |
-
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
120 |
-
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
|
121 |
-
}
|
122 |
-
default_prereq = (
|
123 |
-
"No specific prerequisites are required for this course. "
|
124 |
-
"Basic computer literacy and familiarity with fundamental concepts in the "
|
125 |
-
"subject area are recommended for the best learning experience."
|
126 |
-
)
|
127 |
|
128 |
-
# ---------------- I/O ----------------
|
129 |
-
ext = Path(upload.name).suffix.lower()
|
130 |
-
try:
|
131 |
-
if ext in {".xlsx", ".xls"}:
|
132 |
-
try:
|
133 |
-
df = pd.read_excel(upload.name, sheet_name="Active Schedules")
|
134 |
-
except Exception as e:
|
135 |
-
_log(e, "Excel read failed (falling back to first sheet)")
|
136 |
-
df = pd.read_excel(upload.name, sheet_name=0)
|
137 |
-
else: # CSV
|
138 |
-
try:
|
139 |
-
df = pd.read_csv(upload.name, encoding="latin1")
|
140 |
-
except Exception as e:
|
141 |
-
_log(e, "CSV read failed (trying utf-8)")
|
142 |
-
df = pd.read_csv(upload.name, encoding="utf-8", errors="ignore")
|
143 |
-
except Exception as e:
|
144 |
-
_log(e, "file read totally failed")
|
145 |
-
raise
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
"Decription": "Description",
|
152 |
-
"description": "Description",
|
153 |
-
"Objectives": "Objectives",
|
154 |
-
"objectives": "Objectives",
|
155 |
-
"RequiredPrerequisite": "Required Prerequisite",
|
156 |
-
"Required Pre-requisite": "Required Prerequisite",
|
157 |
-
"RequiredPre-requisite": "Required Prerequisite",
|
158 |
-
}
|
159 |
-
df.rename(columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True)
|
160 |
-
|
161 |
-
# duration if missing
|
162 |
-
if "Duration" not in df.columns:
|
163 |
-
try:
|
164 |
-
df["Duration"] = (
|
165 |
-
pd.to_datetime(df["Course End Date"]) - pd.to_datetime(df["Course Start Date"])
|
166 |
-
).dt.days.add(1)
|
167 |
-
except Exception as e:
|
168 |
-
_log(e, "duration calc failed")
|
169 |
-
df["Duration"] = ""
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
df[col_desc].fillna("").tolist(),
|
188 |
-
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:",
|
189 |
-
),
|
190 |
-
process_text_with_ai_async(
|
191 |
-
df[col_obj].fillna("").tolist(),
|
192 |
-
"Format these objectives into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
|
193 |
-
),
|
194 |
-
process_text_with_ai_async(
|
195 |
-
df["Outline"].fillna("").tolist(),
|
196 |
-
"Format this agenda into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
|
197 |
-
),
|
198 |
-
)
|
199 |
)
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
finally:
|
204 |
-
loop.close()
|
205 |
-
|
206 |
-
short_desc, long_desc, objectives, agendas = res
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
for p in df[col_prereq].fillna("").tolist():
|
211 |
-
if not p.strip():
|
212 |
-
prereq_out.append(default_prereq)
|
213 |
-
else:
|
214 |
-
try:
|
215 |
-
prereq_out.append(
|
216 |
-
asyncio.run(
|
217 |
-
process_text_with_ai_async(
|
218 |
-
[p],
|
219 |
-
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with 'β’ ':",
|
220 |
-
)
|
221 |
-
)[0]
|
222 |
-
)
|
223 |
-
except Exception as e:
|
224 |
-
_log(e, "prereq AI failed")
|
225 |
-
prereq_out.append(default_prereq)
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
df["Condensed_Description"] = long_desc
|
231 |
-
df["Formatted_Objectives"] = objectives
|
232 |
-
df["Formatted_Prerequisites"] = prereq_out
|
233 |
-
df["Formatted_Agenda"] = agendas
|
234 |
-
except Exception as e:
|
235 |
-
_log(e, "adding AI columns")
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
woo_child_df = pd.DataFrame(
|
297 |
-
{
|
298 |
-
"Type": "variation, virtual",
|
299 |
-
"SKU": df["Course SID"],
|
300 |
-
"Name": df["Course Name"],
|
301 |
-
"Published": 1,
|
302 |
-
"Visibility in catalog": "visible",
|
303 |
-
"Short description": df["Short_Description"],
|
304 |
-
"Description": df["Condensed_Description"],
|
305 |
-
"Tax status": "taxable",
|
306 |
-
"In stock?": 1,
|
307 |
-
"Regular price": df["SRP Pricing"].replace("[\\$,]", "", regex=True),
|
308 |
-
"Categories": "courses",
|
309 |
-
"Images": df["Vendor"].map(brand_logo).fillna(""),
|
310 |
-
"Parent": df["Course ID"],
|
311 |
-
"Brands": df["Vendor"],
|
312 |
-
"Attribute 1 name": "Date",
|
313 |
-
"Attribute 1 value(s)": df["Course Start Date"],
|
314 |
-
"Attribute 1 visible": "visible",
|
315 |
-
"Attribute 1 global": 1,
|
316 |
-
"Attribute 2 name": "Location",
|
317 |
-
"Attribute 2 value(s)": "Virtual",
|
318 |
-
"Attribute 2 visible": "visible",
|
319 |
-
"Attribute 2 global": 1,
|
320 |
-
"Attribute 3 name": "Time",
|
321 |
-
"Attribute 3 value(s)": df.apply(
|
322 |
-
lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
|
323 |
-
axis=1,
|
324 |
-
),
|
325 |
-
"Attribute 3 visible": "visible",
|
326 |
-
"Attribute 3 global": 1,
|
327 |
-
"Meta: outline": df["Formatted_Agenda"],
|
328 |
-
"Meta: days": df["Duration"],
|
329 |
-
"Meta: location": "Virtual",
|
330 |
-
"Meta: overview": df["Target Audience"],
|
331 |
-
"Meta: objectives": df["Formatted_Objectives"],
|
332 |
-
"Meta: prerequisites": df["Formatted_Prerequisites"],
|
333 |
-
"Meta: agenda": df["Formatted_Agenda"],
|
334 |
-
}
|
335 |
-
)
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
"SKU",
|
340 |
-
"Name",
|
341 |
-
"Published",
|
342 |
-
"Visibility in catalog",
|
343 |
-
"Short description",
|
344 |
-
"Description",
|
345 |
-
"Tax status",
|
346 |
-
"In stock?",
|
347 |
-
"Regular price",
|
348 |
-
"Categories",
|
349 |
-
"Images",
|
350 |
-
"Parent",
|
351 |
-
"Brands",
|
352 |
-
"Attribute 1 name",
|
353 |
-
"Attribute 1 value(s)",
|
354 |
-
"Attribute 1 visible",
|
355 |
-
"Attribute 1 global",
|
356 |
-
"Attribute 2 name",
|
357 |
-
"Attribute 2 value(s)",
|
358 |
-
"Attribute 2 visible",
|
359 |
-
"Attribute 2 global",
|
360 |
-
"Attribute 3 name",
|
361 |
-
"Attribute 3 value(s)",
|
362 |
-
"Attribute 3 visible",
|
363 |
-
"Attribute 3 global",
|
364 |
-
"Meta: outline",
|
365 |
-
"Meta: days",
|
366 |
-
"Meta: location",
|
367 |
-
"Meta: overview",
|
368 |
-
"Meta: objectives",
|
369 |
-
"Meta: prerequisites",
|
370 |
-
"Meta: agenda",
|
371 |
-
]
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
err_buf = BytesIO()
|
384 |
-
pd.DataFrame({"error": [str(e)]}).to_csv(err_buf, index=False)
|
385 |
-
err_buf.seek(0)
|
386 |
-
return err_buf
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
|
401 |
interface = gr.Interface(
|
402 |
fn=process_file,
|
403 |
-
inputs=gr.File(label="Upload NetCom
|
404 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
405 |
-
title="NetCom
|
406 |
-
description="Upload
|
407 |
analytics_enabled=False,
|
408 |
)
|
409 |
|
410 |
-
if __name__ == "__main__":
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import tempfile
|
4 |
+
import os
|
5 |
from io import BytesIO
|
6 |
+
import re
|
7 |
+
import openai
|
8 |
+
import hashlib
|
9 |
+
import json
|
10 |
+
import asyncio
|
11 |
+
import aiohttp
|
12 |
from pathlib import Path
|
13 |
+
from concurrent.futures import ThreadPoolExecutor
|
14 |
from functools import lru_cache
|
|
|
|
|
15 |
|
16 |
+
import gradio_client.utils
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
_original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
|
19 |
+
|
20 |
def _fixed_json_schema_to_python_type(schema, defs=None):
|
21 |
+
# If the schema is a bool, return a fallback type (e.g. "any")
|
22 |
+
if isinstance(schema, bool):
|
|
|
|
|
|
|
|
|
23 |
return "any"
|
24 |
+
return _original_json_schema_to_python_type(schema, defs)
|
25 |
+
|
26 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
|
27 |
|
28 |
+
|
29 |
+
# Create cache directory if it doesn't exist
|
30 |
+
CACHE_DIR = Path("ai_response_cache")
|
31 |
+
CACHE_DIR.mkdir(exist_ok=True)
|
32 |
+
|
33 |
+
def get_cache_path(prompt):
|
34 |
+
"""Generate a unique cache file path based on the prompt content"""
|
35 |
+
prompt_hash = hashlib.md5(prompt.encode('utf-8')).hexdigest()
|
36 |
+
return CACHE_DIR / f"{prompt_hash}.json"
|
37 |
|
38 |
def get_cached_response(prompt):
|
39 |
+
"""Try to get a cached response for the given prompt"""
|
40 |
+
cache_path = get_cache_path(prompt)
|
41 |
+
if cache_path.exists():
|
42 |
+
try:
|
43 |
+
with open(cache_path, 'r', encoding='utf-8') as f:
|
44 |
+
return json.load(f)['response']
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error reading cache: {e}")
|
47 |
return None
|
48 |
|
49 |
def cache_response(prompt, response):
|
50 |
+
"""Cache the response for a given prompt"""
|
51 |
+
cache_path = get_cache_path(prompt)
|
52 |
try:
|
53 |
+
with open(cache_path, 'w', encoding='utf-8') as f:
|
54 |
+
json.dump({'prompt': prompt, 'response': response}, f)
|
|
|
55 |
except Exception as e:
|
56 |
+
print(f"Error writing to cache: {e}")
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
async def process_text_batch_async(client, batch_prompts):
|
60 |
+
"""Process a batch of prompts asynchronously"""
|
61 |
+
results = []
|
62 |
+
|
63 |
+
# First check cache for each prompt
|
64 |
+
for prompt in batch_prompts:
|
65 |
+
cached = get_cached_response(prompt)
|
66 |
+
if cached:
|
67 |
+
results.append((prompt, cached))
|
68 |
+
|
69 |
+
# Filter out prompts that were found in cache
|
70 |
+
uncached_prompts = [p for p in batch_prompts if not any(p == cached_prompt for cached_prompt, _ in results)]
|
71 |
+
|
72 |
+
if uncached_prompts:
|
73 |
+
# Process uncached prompts in parallel
|
74 |
+
async def process_single_prompt(prompt):
|
75 |
+
try:
|
76 |
+
response = await client.chat.completions.create(
|
77 |
+
model="gpt-4o-mini",
|
78 |
+
messages=[{"role": "user", "content": prompt}],
|
79 |
+
temperature=0
|
80 |
+
)
|
81 |
+
result = response.choices[0].message.content
|
82 |
+
# Cache the result
|
83 |
+
cache_response(prompt, result)
|
84 |
+
return prompt, result
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error processing prompt: {e}")
|
87 |
+
return prompt, f"Error: {str(e)}"
|
88 |
+
|
89 |
+
# Create tasks for all uncached prompts
|
90 |
+
tasks = [process_single_prompt(prompt) for prompt in uncached_prompts]
|
91 |
+
|
92 |
+
# Run all tasks concurrently and wait for them to complete
|
93 |
+
uncached_results = await asyncio.gather(*tasks)
|
94 |
+
|
95 |
+
# Combine cached and newly processed results
|
96 |
+
results.extend(uncached_results)
|
97 |
+
|
98 |
+
# Sort results to match original order of batch_prompts
|
99 |
+
prompt_to_result = {prompt: result for prompt, result in results}
|
100 |
+
return [prompt_to_result[prompt] for prompt in batch_prompts]
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
async def process_text_with_ai_async(texts, instruction):
|
104 |
+
"""Process text with GPT-4o-mini asynchronously in batches"""
|
105 |
if not texts:
|
106 |
return []
|
107 |
+
|
108 |
+
results = []
|
109 |
+
batch_size = 500
|
110 |
+
|
111 |
+
# Create OpenAI async client
|
112 |
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
113 |
+
|
114 |
+
# Process in batches
|
115 |
for i in range(0, len(texts), batch_size):
|
116 |
+
batch = texts[i:i+batch_size]
|
117 |
+
batch_prompts = [f"{instruction}\n\nText: {text}" for text in batch]
|
118 |
+
|
119 |
+
batch_results = await process_text_batch_async(client, batch_prompts)
|
120 |
+
results.extend(batch_results)
|
121 |
+
|
122 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
def process_woocommerce_data_in_memory(netcom_file):
|
126 |
+
"""
|
127 |
+
Reads the uploaded NetCom CSV file in-memory, processes it to the WooCommerce format,
|
128 |
+
and returns the resulting CSV as bytes, suitable for download.
|
129 |
+
"""
|
130 |
+
# Define the brand-to-logo mapping with updated URLs
|
131 |
+
brand_logo_map = {
|
132 |
+
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
133 |
+
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
134 |
+
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
135 |
+
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
136 |
+
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
137 |
+
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
138 |
+
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
139 |
+
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
140 |
+
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
141 |
+
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
142 |
+
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png"
|
143 |
+
}
|
144 |
|
145 |
+
# Default prerequisite text for courses without prerequisites
|
146 |
+
default_prerequisite = "No specific prerequisites are required for this course. Basic computer literacy and familiarity with fundamental concepts in the subject area are recommended for the best learning experience."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
# 1. Read the uploaded CSV into a DataFrame
|
149 |
+
netcom_df = pd.read_csv(netcom_file.name, encoding='latin1')
|
150 |
+
netcom_df.columns = netcom_df.columns.str.strip() # standardize column names
|
151 |
+
|
152 |
+
# Prepare descriptions for AI processing
|
153 |
+
descriptions = netcom_df['Decription'].fillna("").tolist()
|
154 |
+
objectives = netcom_df['Objectives'].fillna("").tolist()
|
155 |
+
prerequisites = netcom_df['RequiredPrerequisite'].fillna("").tolist()
|
156 |
+
agendas = netcom_df['Outline'].fillna("").tolist()
|
157 |
+
|
158 |
+
# Process with AI asynchronously
|
159 |
+
loop = asyncio.new_event_loop()
|
160 |
+
asyncio.set_event_loop(loop)
|
161 |
+
|
162 |
+
# Run all processing tasks concurrently
|
163 |
+
tasks = [
|
164 |
+
process_text_with_ai_async(
|
165 |
+
descriptions,
|
166 |
+
"Create a concise 250-character summary of this course description:"
|
167 |
+
),
|
168 |
+
process_text_with_ai_async(
|
169 |
+
descriptions,
|
170 |
+
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:"
|
171 |
+
),
|
172 |
+
process_text_with_ai_async(
|
173 |
+
objectives,
|
174 |
+
"Format these objectives into a bullet list format with clean formatting. Start each bullet with 'β’ ':"
|
175 |
+
),
|
176 |
+
process_text_with_ai_async(
|
177 |
+
agendas,
|
178 |
+
"Format this agenda into a bullet list format with clean formatting. Start each bullet with 'β’ ':"
|
179 |
+
)
|
180 |
+
]
|
181 |
+
|
182 |
+
# Process prerequisites separately to handle default case
|
183 |
+
formatted_prerequisites_task = []
|
184 |
+
for prereq in prerequisites:
|
185 |
+
if not prereq or pd.isna(prereq) or prereq.strip() == "":
|
186 |
+
formatted_prerequisites_task.append(default_prerequisite)
|
187 |
+
else:
|
188 |
+
# For non-empty prerequisites, we'll process them with AI
|
189 |
+
prereq_result = loop.run_until_complete(process_text_with_ai_async(
|
190 |
+
[prereq],
|
191 |
+
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with 'β’ ':"
|
192 |
+
))
|
193 |
+
formatted_prerequisites_task.append(prereq_result[0])
|
194 |
+
|
195 |
+
# Run all tasks and get results
|
196 |
+
results = loop.run_until_complete(asyncio.gather(*tasks))
|
197 |
+
loop.close()
|
198 |
+
|
199 |
+
short_descriptions, condensed_descriptions, formatted_objectives, formatted_agendas = results
|
200 |
+
|
201 |
+
# Add processed text to dataframe
|
202 |
+
netcom_df['Short_Description'] = short_descriptions
|
203 |
+
netcom_df['Condensed_Description'] = condensed_descriptions
|
204 |
+
netcom_df['Formatted_Objectives'] = formatted_objectives
|
205 |
+
netcom_df['Formatted_Prerequisites'] = formatted_prerequisites_task
|
206 |
+
netcom_df['Formatted_Agenda'] = formatted_agendas
|
207 |
|
208 |
+
# 2. Create aggregated dates and times for each Course ID
|
209 |
+
# Sort by Course ID and date first
|
210 |
+
netcom_df = netcom_df.sort_values(['Course ID', 'Course Start Date'])
|
211 |
+
|
212 |
+
date_agg = (
|
213 |
+
netcom_df.groupby('Course ID')['Course Start Date']
|
214 |
+
.apply(lambda x: ','.join(x.astype(str).unique()))
|
215 |
+
.reset_index(name='Aggregated_Dates')
|
216 |
+
)
|
217 |
|
218 |
+
time_agg = (
|
219 |
+
netcom_df.groupby('Course ID')
|
220 |
+
.apply(
|
221 |
+
lambda df: ','.join(
|
222 |
+
f"{st}-{et} {tz}"
|
223 |
+
for st, et, tz in zip(df['Course Start Time'],
|
224 |
+
df['Course End Time'],
|
225 |
+
df['Time Zone'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
)
|
227 |
+
)
|
228 |
+
.reset_index(name='Aggregated_Times')
|
229 |
+
)
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
# 3. Extract unique parent products
|
232 |
+
parent_products = netcom_df.drop_duplicates(subset=['Course ID'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# 4. Merge aggregated dates and times
|
235 |
+
parent_products = parent_products.merge(date_agg, on='Course ID', how='left')
|
236 |
+
parent_products = parent_products.merge(time_agg, on='Course ID', how='left')
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
# 5. Create parent (variable) products
|
239 |
+
woo_parent_df = pd.DataFrame({
|
240 |
+
'Type': 'variable',
|
241 |
+
'SKU': parent_products['Course ID'],
|
242 |
+
'Name': parent_products['Course Name'],
|
243 |
+
'Published': 1,
|
244 |
+
'Visibility in catalog': 'visible',
|
245 |
+
'Short description': parent_products['Short_Description'],
|
246 |
+
'Description': parent_products['Condensed_Description'],
|
247 |
+
'Tax status': 'taxable',
|
248 |
+
'In stock?': 1,
|
249 |
+
'Regular price': parent_products['SRP Pricing'].replace('[\$,]', '', regex=True),
|
250 |
+
'Categories': 'courses',
|
251 |
+
'Images': parent_products['Vendor'].map(brand_logo_map).fillna(''),
|
252 |
+
'Parent': '',
|
253 |
+
'Brands': parent_products['Vendor'],
|
254 |
+
'Attribute 1 name': 'Date',
|
255 |
+
'Attribute 1 value(s)': parent_products['Aggregated_Dates'],
|
256 |
+
'Attribute 1 visible': 'visible',
|
257 |
+
'Attribute 1 global': 1,
|
258 |
+
'Attribute 2 name': 'Location',
|
259 |
+
'Attribute 2 value(s)': 'Virtual',
|
260 |
+
'Attribute 2 visible': 'visible',
|
261 |
+
'Attribute 2 global': 1,
|
262 |
+
'Attribute 3 name': 'Time',
|
263 |
+
'Attribute 3 value(s)': parent_products['Aggregated_Times'],
|
264 |
+
'Attribute 3 visible': 'visible',
|
265 |
+
'Attribute 3 global': 1,
|
266 |
+
'Meta: outline': parent_products['Formatted_Agenda'],
|
267 |
+
'Meta: days': parent_products['Duration'],
|
268 |
+
'Meta: location': 'Virtual',
|
269 |
+
'Meta: overview': parent_products['Target Audience'],
|
270 |
+
'Meta: objectives': parent_products['Formatted_Objectives'],
|
271 |
+
'Meta: prerequisites': parent_products['Formatted_Prerequisites'],
|
272 |
+
'Meta: agenda': parent_products['Formatted_Agenda']
|
273 |
+
})
|
274 |
|
275 |
+
# 6. Create child (variation) products
|
276 |
+
woo_child_df = pd.DataFrame({
|
277 |
+
'Type': 'variation, virtual',
|
278 |
+
'SKU': netcom_df['Course SID'],
|
279 |
+
'Name': netcom_df['Course Name'],
|
280 |
+
'Published': 1,
|
281 |
+
'Visibility in catalog': 'visible',
|
282 |
+
'Short description': netcom_df['Short_Description'],
|
283 |
+
'Description': netcom_df['Condensed_Description'],
|
284 |
+
'Tax status': 'taxable',
|
285 |
+
'In stock?': 1,
|
286 |
+
'Regular price': netcom_df['SRP Pricing'].replace('[\$,]', '', regex=True),
|
287 |
+
'Categories': 'courses',
|
288 |
+
'Images': netcom_df['Vendor'].map(brand_logo_map).fillna(''),
|
289 |
+
'Parent': netcom_df['Course ID'],
|
290 |
+
'Brands': netcom_df['Vendor'],
|
291 |
+
'Attribute 1 name': 'Date',
|
292 |
+
'Attribute 1 value(s)': netcom_df['Course Start Date'],
|
293 |
+
'Attribute 1 visible': 'visible',
|
294 |
+
'Attribute 1 global': 1,
|
295 |
+
'Attribute 2 name': 'Location',
|
296 |
+
'Attribute 2 value(s)': 'Virtual',
|
297 |
+
'Attribute 2 visible': 'visible',
|
298 |
+
'Attribute 2 global': 1,
|
299 |
+
'Attribute 3 name': 'Time',
|
300 |
+
'Attribute 3 value(s)': netcom_df.apply(
|
301 |
+
lambda row: f"{row['Course Start Time']}-{row['Course End Time']} {row['Time Zone']}", axis=1
|
302 |
+
),
|
303 |
+
'Attribute 3 visible': 'visible',
|
304 |
+
'Attribute 3 global': 1,
|
305 |
+
'Meta: outline': netcom_df['Formatted_Agenda'],
|
306 |
+
'Meta: days': netcom_df['Duration'],
|
307 |
+
'Meta: location': 'Virtual',
|
308 |
+
'Meta: overview': netcom_df['Target Audience'],
|
309 |
+
'Meta: objectives': netcom_df['Formatted_Objectives'],
|
310 |
+
'Meta: prerequisites': netcom_df['Formatted_Prerequisites'],
|
311 |
+
'Meta: agenda': netcom_df['Formatted_Agenda']
|
312 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
# 7. Combine parent + child
|
315 |
+
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
# 8. Desired column order (removed Stock and Sold individually?)
|
318 |
+
column_order = [
|
319 |
+
'Type', 'SKU', 'Name', 'Published', 'Visibility in catalog',
|
320 |
+
'Short description', 'Description', 'Tax status', 'In stock?',
|
321 |
+
'Regular price', 'Categories', 'Images',
|
322 |
+
'Parent', 'Brands', 'Attribute 1 name', 'Attribute 1 value(s)', 'Attribute 1 visible',
|
323 |
+
'Attribute 1 global', 'Attribute 2 name', 'Attribute 2 value(s)', 'Attribute 2 visible',
|
324 |
+
'Attribute 2 global', 'Attribute 3 name', 'Attribute 3 value(s)', 'Attribute 3 visible',
|
325 |
+
'Attribute 3 global', 'Meta: outline', 'Meta: days', 'Meta: location', 'Meta: overview',
|
326 |
+
'Meta: objectives', 'Meta: prerequisites', 'Meta: agenda'
|
327 |
+
]
|
328 |
+
woo_final_df = woo_final_df[column_order]
|
329 |
|
330 |
+
# 9. Convert to CSV (in memory)
|
331 |
+
output_buffer = BytesIO()
|
332 |
+
woo_final_df.to_csv(output_buffer, index=False, encoding='utf-8-sig')
|
333 |
+
output_buffer.seek(0)
|
334 |
+
|
335 |
+
return output_buffer
|
|
|
|
|
|
|
|
|
336 |
|
337 |
+
def process_file(uploaded_file):
|
338 |
+
"""
|
339 |
+
Takes the uploaded file, processes it, and returns the CSV as a file-like object
|
340 |
+
"""
|
341 |
+
processed_csv_io = process_woocommerce_data_in_memory(uploaded_file)
|
342 |
+
|
343 |
+
# Create a temporary file to save the CSV data
|
344 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.csv') as temp_file:
|
345 |
+
temp_file.write(processed_csv_io.getvalue())
|
346 |
+
temp_path = temp_file.name
|
347 |
+
|
348 |
+
return temp_path
|
349 |
|
350 |
interface = gr.Interface(
|
351 |
fn=process_file,
|
352 |
+
inputs=gr.File(label="Upload NetCom CSV", file_types=[".csv"]),
|
353 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
354 |
+
title="NetCom to WooCommerce CSV Processor",
|
355 |
+
description="Upload your NetCom Reseller Schedule CSV to generate the WooCommerce import-ready CSV.",
|
356 |
analytics_enabled=False,
|
357 |
)
|
358 |
|
359 |
+
if __name__ == "__main__":
|
360 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
361 |
+
if not openai_api_key:
|
362 |
+
print("Warning: OPENAI_API_KEY environment variable not set")
|
363 |
+
interface.launch()
|