Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
-
"""NetCom β WooCommerce transformer (Try
|
2 |
-
duplicate
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
CSV; output the fresh WooCommerce CSV
|
7 |
|
8 |
-
New
|
9 |
--------------------
|
10 |
-
* **
|
11 |
-
|
12 |
-
|
13 |
-
*
|
14 |
-
|
|
|
|
|
15 |
"""
|
16 |
|
17 |
from __future__ import annotations
|
@@ -23,44 +25,64 @@ import os
|
|
23 |
import tempfile
|
24 |
from io import BytesIO
|
25 |
from pathlib import Path
|
|
|
26 |
|
27 |
import gradio as gr
|
28 |
import gradio_client.utils
|
29 |
import openai
|
30 |
import pandas as pd
|
31 |
|
32 |
-
# ββ Gradio bool
|
33 |
_original = gradio_client.utils._json_schema_to_python_type
|
|
|
34 |
def _fixed_json_schema_to_python_type(schema, defs=None): # type: ignore
|
35 |
if isinstance(schema, bool):
|
36 |
return "any"
|
37 |
return _original(schema, defs)
|
|
|
38 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
39 |
|
40 |
-
# ββ Persistent disk cache (HF Spaces uses /data)
|
41 |
_PERSISTENT_ROOT = Path("/data")
|
42 |
CACHE_DIR = (_PERSISTENT_ROOT if _PERSISTENT_ROOT.exists() else Path(".")) / "ai_response_cache"
|
43 |
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
44 |
|
|
|
45 |
def _cache_path(p: str) -> Path:
|
46 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
47 |
|
|
|
48 |
def _get_cached(p: str) -> str | None:
|
49 |
try:
|
50 |
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
|
51 |
except Exception:
|
52 |
return None
|
53 |
|
|
|
54 |
def _set_cache(p: str, r: str) -> None:
|
55 |
try:
|
56 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
57 |
except Exception:
|
58 |
pass
|
59 |
|
60 |
-
# ββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
_SEM = asyncio.Semaphore(100) # β€100 concurrent OpenAI calls
|
62 |
_inflight: dict[str, asyncio.Future] = {} # prompt β Future
|
63 |
|
|
|
64 |
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
65 |
cached = _get_cached(prompt)
|
66 |
if cached is not None:
|
@@ -93,6 +115,7 @@ async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
|
93 |
finally:
|
94 |
_inflight.pop(prompt, None)
|
95 |
|
|
|
96 |
async def _batch_async(lst, instruction: str, client):
|
97 |
out = ["" for _ in lst]
|
98 |
idx, prompts = [], []
|
@@ -105,30 +128,30 @@ async def _batch_async(lst, instruction: str, client):
|
|
105 |
|
106 |
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
107 |
for j, val in enumerate(responses):
|
108 |
-
out[idx[j]] = val
|
109 |
return out
|
110 |
|
111 |
-
# ββ Instructions (reuse across preload & gen)
|
112 |
DESC_SHORT = "Create a concise 250-character summary of this course description:"
|
113 |
DESC_LONG = "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"
|
114 |
OBJECTIVES = "Format these objectives into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
115 |
AGENDA = "Format this agenda into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
116 |
PREREQ = "Format these prerequisites into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
117 |
|
118 |
-
# ββ Logo map (relative paths, with common aliases)
|
119 |
logos = {
|
120 |
-
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
|
121 |
-
"AWS": "/wp-content/uploads/2025/04/aws.png",
|
122 |
-
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
123 |
-
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
124 |
-
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
|
125 |
-
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
|
126 |
-
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
|
127 |
-
"PMI": "/wp-content/uploads/2025/04/PMI.png",
|
128 |
-
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
|
129 |
-
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
|
130 |
-
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
|
131 |
-
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
|
132 |
}
|
133 |
|
134 |
DEFAULT_PREREQ = (
|
@@ -137,9 +160,10 @@ DEFAULT_PREREQ = (
|
|
137 |
"learning experience."
|
138 |
)
|
139 |
|
140 |
-
# ββ Cache
|
|
|
141 |
def _preload_cache(prev_csv: str, df_new: pd.DataFrame, dcol, ocol, pcol, acol):
|
142 |
-
"""Seed the on
|
143 |
try:
|
144 |
prev = pd.read_csv(prev_csv, encoding="utf-8-sig")
|
145 |
except Exception:
|
@@ -159,14 +183,15 @@ def _preload_cache(prev_csv: str, df_new: pd.DataFrame, dcol, ocol, pcol, acol):
|
|
159 |
ag = str(row[acol])
|
160 |
pre = str(row[pcol])
|
161 |
|
162 |
-
_set_cache(f"{DESC_SHORT}\n\nText: {desc}", old.get("Short description", ""))
|
163 |
-
_set_cache(f"{DESC_LONG}\n\nText: {desc}",
|
164 |
-
_set_cache(f"{OBJECTIVES}\n\nText: {obj}", old.get("Meta: objectives", ""))
|
165 |
-
_set_cache(f"{AGENDA}\n\nText: {ag}", old.get("Meta: agenda", ""))
|
166 |
if pre.strip():
|
167 |
-
_set_cache(f"{PREREQ}\n\nText: {pre}", old.get("Meta: prerequisites", ""))
|
|
|
|
|
168 |
|
169 |
-
# ββ Helper: read user file (CSV or Excel) ββββββββββββββββββββββββββββββββββββ
|
170 |
def _read(path: str) -> pd.DataFrame:
|
171 |
if path.lower().endswith((".xlsx", ".xls")):
|
172 |
return pd.read_excel(path)
|
@@ -191,9 +216,17 @@ async def _enrich_dataframe(df, dcol, ocol, pcol, acol):
|
|
191 |
out = await _batch_async([req], PREREQ, client)
|
192 |
fpre.append(out[0])
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
return sdesc, ldesc, fobj, fout, fpre
|
195 |
|
196 |
-
# ββ Main converter
|
|
|
197 |
def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
198 |
df = _read(schedule_path)
|
199 |
df.columns = df.columns.str.strip()
|
@@ -203,36 +236,43 @@ def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
|
203 |
ocol = first_col("Objectives", "objectives")
|
204 |
pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
|
205 |
acol = first_col("Outline")
|
206 |
-
dur = first_col("Duration") or "Duration"
|
207 |
sid = first_col("Course SID", "Course SID")
|
208 |
|
209 |
-
if dur not in df.columns:
|
210 |
-
df[dur] = ""
|
211 |
-
|
212 |
# optional cache preload
|
213 |
if prev_csv_path:
|
214 |
_preload_cache(prev_csv_path, df, dcol, ocol, pcol, acol)
|
215 |
|
216 |
-
# async
|
217 |
sdesc, ldesc, fobj, fout, fpre = asyncio.run(
|
218 |
_enrich_dataframe(df, dcol, ocol, pcol, acol)
|
219 |
)
|
220 |
-
df["Short_Description"] = sdesc
|
221 |
-
df["Condensed_Description"] = ldesc
|
222 |
-
df["Formatted_Objectives"] = fobj
|
223 |
-
df["Formatted_Agenda"] = fout
|
224 |
-
df["Formatted_Prerequisites"]= fpre
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
228 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
229 |
|
230 |
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
d_agg = (
|
232 |
dsorted.groupby("Course ID")["Date_fmt"]
|
233 |
-
.apply(lambda s: ",".join(s.dropna().unique()))
|
234 |
.reset_index(name="Dates")
|
235 |
)
|
|
|
236 |
t_agg = (
|
237 |
dsorted.groupby("Course ID", group_keys=False)
|
238 |
.apply(
|
@@ -246,7 +286,16 @@ def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
|
246 |
)
|
247 |
.reset_index(name="Times")
|
248 |
)
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
parent = pd.DataFrame(
|
252 |
{
|
@@ -279,7 +328,7 @@ def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
|
279 |
"Attribute 3 visible": "visible",
|
280 |
"Attribute 3 global": 1,
|
281 |
"Meta: outline": parents["Formatted_Agenda"],
|
282 |
-
"Meta: days": parents[
|
283 |
"Meta: location": "Virtual",
|
284 |
"Meta: overview": parents["Target Audience"],
|
285 |
"Meta: objectives": parents["Formatted_Objectives"],
|
@@ -322,7 +371,7 @@ def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
|
322 |
"Attribute 3 visible": "visible",
|
323 |
"Attribute 3 global": 1,
|
324 |
"Meta: outline": dsorted["Formatted_Agenda"],
|
325 |
-
"Meta: days": dsorted[
|
326 |
"Meta: location": "Virtual",
|
327 |
"Meta: overview": dsorted["Target Audience"],
|
328 |
"Meta: objectives": dsorted["Formatted_Objectives"],
|
@@ -346,7 +395,8 @@ def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
|
346 |
out.seek(0)
|
347 |
return out
|
348 |
|
349 |
-
# ββ Gradio interface
|
|
|
350 |
def process_files(schedule: gr.File, previous: gr.File | None) -> str:
|
351 |
csv_bytes = convert(schedule.name, previous.name if previous else None)
|
352 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
@@ -360,7 +410,7 @@ ui = gr.Interface(
|
|
360 |
gr.File(label="Previous WooCommerce CSV (optional)", file_types=[".csv"]),
|
361 |
],
|
362 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
363 |
-
title="NetCom β WooCommerce CSV Processor (Try
|
364 |
description=(
|
365 |
"1. Upload the **latest NetCom schedule** file.\n"
|
366 |
"2. *(Optional)* Upload the **WooCommerce CSV** generated by a previous run to "
|
|
|
1 |
+
"""NetCom β WooCommerce transformer (TryΒ 3Β schema β metaβdays calc, sorted attributes, deduped AI sections, persistent cache, 100βparallel,
|
2 |
+
duplicateβsafe, relativeβlogo paths, cacheβpreload)
|
3 |
+
==============================================================================
|
4 |
|
5 |
+
Accept a NetCom schedule (CSV/XLSX) and **optionally** a *previous* WooCommerce
|
6 |
+
CSV; output the fresh WooCommerce CSV.
|
7 |
|
8 |
+
NewΒ in this revision
|
9 |
--------------------
|
10 |
+
* **MetaΒ days** automatically calculated as the inclusive span (in days) between
|
11 |
+
the earliest and latest course dates for each CourseΒ ID.
|
12 |
+
* **AttributeΒ 1 (Date)** lists are now guaranteed to be sorted chronologically.
|
13 |
+
* All AIβgenerated sections (descriptions, objectives, agenda, prerequisites)
|
14 |
+
are postβprocessed to **deduplicate any repeated lines** inside each section.
|
15 |
+
* Everything else (persistent cache in `/data`, 100βparallel semaphore,
|
16 |
+
inβflight deβduplication, pandas compatibility fix) remains unchanged.
|
17 |
"""
|
18 |
|
19 |
from __future__ import annotations
|
|
|
25 |
import tempfile
|
26 |
from io import BytesIO
|
27 |
from pathlib import Path
|
28 |
+
from typing import List
|
29 |
|
30 |
import gradio as gr
|
31 |
import gradio_client.utils
|
32 |
import openai
|
33 |
import pandas as pd
|
34 |
|
35 |
+
# ββ Gradio boolβschema hotβpatch ββββββββββββββββββββββββββββββββββββββββββββ
|
36 |
_original = gradio_client.utils._json_schema_to_python_type
|
37 |
+
|
38 |
def _fixed_json_schema_to_python_type(schema, defs=None): # type: ignore
|
39 |
if isinstance(schema, bool):
|
40 |
return "any"
|
41 |
return _original(schema, defs)
|
42 |
+
|
43 |
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type # type: ignore
|
44 |
|
45 |
+
# ββ Persistent disk cache (HF Spaces uses /data) ββββββββββββββββββββββββββββ
|
46 |
_PERSISTENT_ROOT = Path("/data")
|
47 |
CACHE_DIR = (_PERSISTENT_ROOT if _PERSISTENT_ROOT.exists() else Path(".")) / "ai_response_cache"
|
48 |
CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
49 |
|
50 |
+
|
51 |
def _cache_path(p: str) -> Path:
|
52 |
return CACHE_DIR / f"{hashlib.md5(p.encode()).hexdigest()}.json"
|
53 |
|
54 |
+
|
55 |
def _get_cached(p: str) -> str | None:
|
56 |
try:
|
57 |
return json.loads(_cache_path(p).read_text("utf-8"))["response"]
|
58 |
except Exception:
|
59 |
return None
|
60 |
|
61 |
+
|
62 |
def _set_cache(p: str, r: str) -> None:
|
63 |
try:
|
64 |
_cache_path(p).write_text(json.dumps({"prompt": p, "response": r}), "utf-8")
|
65 |
except Exception:
|
66 |
pass
|
67 |
|
68 |
+
# ββ Helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
69 |
+
|
70 |
+
def _dedup_lines(txt: str) -> str:
|
71 |
+
"""Remove duplicated lines while preserving order inside a block of text."""
|
72 |
+
seen = set()
|
73 |
+
out: List[str] = []
|
74 |
+
for raw in txt.splitlines():
|
75 |
+
line = raw.rstrip()
|
76 |
+
if line and line not in seen:
|
77 |
+
out.append(line)
|
78 |
+
seen.add(line)
|
79 |
+
return "\n".join(out)
|
80 |
+
|
81 |
+
# ββ OpenAI helpers: 100βparallel + deβdup βββββββββββββββββββββββββββββββββββ
|
82 |
_SEM = asyncio.Semaphore(100) # β€100 concurrent OpenAI calls
|
83 |
_inflight: dict[str, asyncio.Future] = {} # prompt β Future
|
84 |
|
85 |
+
|
86 |
async def _gpt_async(client: openai.AsyncOpenAI, prompt: str) -> str:
|
87 |
cached = _get_cached(prompt)
|
88 |
if cached is not None:
|
|
|
115 |
finally:
|
116 |
_inflight.pop(prompt, None)
|
117 |
|
118 |
+
|
119 |
async def _batch_async(lst, instruction: str, client):
|
120 |
out = ["" for _ in lst]
|
121 |
idx, prompts = [], []
|
|
|
128 |
|
129 |
responses = await asyncio.gather(*[_gpt_async(client, p) for p in prompts])
|
130 |
for j, val in enumerate(responses):
|
131 |
+
out[idx[j]] = _dedup_lines(val)
|
132 |
return out
|
133 |
|
134 |
+
# ββ Instructions (reuse across preload & gen) βββββββββββββββββββββββββββββββ
|
135 |
DESC_SHORT = "Create a concise 250-character summary of this course description:"
|
136 |
DESC_LONG = "Condense this description to a maximum of 750 characters in paragraph format, with clean formatting:"
|
137 |
OBJECTIVES = "Format these objectives into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
138 |
AGENDA = "Format this agenda into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
139 |
PREREQ = "Format these prerequisites into a bullet list with clean formatting. Start each bullet with 'β’ ':"
|
140 |
|
141 |
+
# ββ Logo map (relative paths, with common aliases) ββββββββββββββββββββββββββ
|
142 |
logos = {
|
143 |
+
"Amazon Web Services": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aws.png",
|
144 |
+
"AWS": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aws.png",
|
145 |
+
"Cisco": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
|
146 |
+
"Microsoft": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
|
147 |
+
"Google Cloud": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Google_Cloud.png",
|
148 |
+
"EC Council": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Ec_Council.png",
|
149 |
+
"ITIL": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/ITIL.webp",
|
150 |
+
"PMI": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/PMI.png",
|
151 |
+
"Comptia": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/Comptia.png",
|
152 |
+
"Autodesk": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/autodesk.png",
|
153 |
+
"ISC2": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/ISC2.png",
|
154 |
+
"AICerts": "https://staging.greathorizonslearning.com/wp-content/uploads/2025/04/aicerts-logo-1.png",
|
155 |
}
|
156 |
|
157 |
DEFAULT_PREREQ = (
|
|
|
160 |
"learning experience."
|
161 |
)
|
162 |
|
163 |
+
# ββ Cacheβpreload from previous WooCommerce CSV βββββββββββββββββββββββββββββ
|
164 |
+
|
165 |
def _preload_cache(prev_csv: str, df_new: pd.DataFrame, dcol, ocol, pcol, acol):
|
166 |
+
"""Seed the onβdisk cache with completions from an earlier WooCommerce CSV."""
|
167 |
try:
|
168 |
prev = pd.read_csv(prev_csv, encoding="utf-8-sig")
|
169 |
except Exception:
|
|
|
183 |
ag = str(row[acol])
|
184 |
pre = str(row[pcol])
|
185 |
|
186 |
+
_set_cache(f"{DESC_SHORT}\n\nText: {desc}", _dedup_lines(old.get("Short description", "")))
|
187 |
+
_set_cache(f"{DESC_LONG}\n\nText: {desc}", _dedup_lines(old.get("Description", "")))
|
188 |
+
_set_cache(f"{OBJECTIVES}\n\nText: {obj}", _dedup_lines(old.get("Meta: objectives", "")))
|
189 |
+
_set_cache(f"{AGENDA}\n\nText: {ag}", _dedup_lines(old.get("Meta: agenda", "")))
|
190 |
if pre.strip():
|
191 |
+
_set_cache(f"{PREREQ}\n\nText: {pre}", _dedup_lines(old.get("Meta: prerequisites", "")))
|
192 |
+
|
193 |
+
# ββ Helper: read user file (CSV or Excel) βββββββββββββββββββββββββββββββββββ
|
194 |
|
|
|
195 |
def _read(path: str) -> pd.DataFrame:
|
196 |
if path.lower().endswith((".xlsx", ".xls")):
|
197 |
return pd.read_excel(path)
|
|
|
216 |
out = await _batch_async([req], PREREQ, client)
|
217 |
fpre.append(out[0])
|
218 |
|
219 |
+
# Ensure everything is deduped (safety).
|
220 |
+
sdesc = [_dedup_lines(t) for t in sdesc]
|
221 |
+
ldesc = [_dedup_lines(t) for t in ldesc]
|
222 |
+
fobj = [_dedup_lines(t) for t in fobj]
|
223 |
+
fout = [_dedup_lines(t) for t in fout]
|
224 |
+
fpre = [_dedup_lines(t) for t in fpre]
|
225 |
+
|
226 |
return sdesc, ldesc, fobj, fout, fpre
|
227 |
|
228 |
+
# ββ Main converter ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
229 |
+
|
230 |
def convert(schedule_path: str, prev_csv_path: str | None = None) -> BytesIO:
|
231 |
df = _read(schedule_path)
|
232 |
df.columns = df.columns.str.strip()
|
|
|
236 |
ocol = first_col("Objectives", "objectives")
|
237 |
pcol = first_col("RequiredPrerequisite", "Required Pre-requisite")
|
238 |
acol = first_col("Outline")
|
239 |
+
dur = first_col("Duration") or "Duration" # kept for backwardβcompat (unused)
|
240 |
sid = first_col("Course SID", "Course SID")
|
241 |
|
|
|
|
|
|
|
242 |
# optional cache preload
|
243 |
if prev_csv_path:
|
244 |
_preload_cache(prev_csv_path, df, dcol, ocol, pcol, acol)
|
245 |
|
246 |
+
# asyncβenrich via LLM
|
247 |
sdesc, ldesc, fobj, fout, fpre = asyncio.run(
|
248 |
_enrich_dataframe(df, dcol, ocol, pcol, acol)
|
249 |
)
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
+
df["Short_Description"] = sdesc
|
252 |
+
df["Condensed_Description"] = ldesc
|
253 |
+
df["Formatted_Objectives"] = fobj
|
254 |
+
df["Formatted_Agenda"] = fout
|
255 |
+
df["Formatted_Prerequisites"] = fpre
|
256 |
+
|
257 |
+
# schedule aggregation & metaβdays calculation
|
258 |
df["Course Start Date"] = pd.to_datetime(df["Course Start Date"], errors="coerce")
|
259 |
df["Date_fmt"] = df["Course Start Date"].dt.strftime("%-m/%-d/%Y")
|
260 |
|
261 |
dsorted = df.sort_values(["Course ID", "Course Start Date"])
|
262 |
+
|
263 |
+
# "MetaDays" = inclusive span between earliest & latest dates per CourseΒ ID
|
264 |
+
meta_days = (
|
265 |
+
dsorted.groupby("Course ID")["Course Start Date"].agg(lambda s: (s.max() - s.min()).days + 1)
|
266 |
+
.reset_index(name="MetaDays")
|
267 |
+
)
|
268 |
+
|
269 |
+
# AttributeΒ 1 list β ensure chronological order
|
270 |
d_agg = (
|
271 |
dsorted.groupby("Course ID")["Date_fmt"]
|
272 |
+
.apply(lambda s: ",".join(sorted(s.dropna().unique(), key=lambda x: pd.to_datetime(x))))
|
273 |
.reset_index(name="Dates")
|
274 |
)
|
275 |
+
|
276 |
t_agg = (
|
277 |
dsorted.groupby("Course ID", group_keys=False)
|
278 |
.apply(
|
|
|
286 |
)
|
287 |
.reset_index(name="Times")
|
288 |
)
|
289 |
+
|
290 |
+
parents = (
|
291 |
+
dsorted.drop_duplicates("Course ID")
|
292 |
+
.merge(d_agg)
|
293 |
+
.merge(t_agg)
|
294 |
+
.merge(meta_days)
|
295 |
+
)
|
296 |
+
|
297 |
+
# propagate MetaDays to each schedule row
|
298 |
+
dsorted = dsorted.merge(meta_days, on="Course ID", how="left")
|
299 |
|
300 |
parent = pd.DataFrame(
|
301 |
{
|
|
|
328 |
"Attribute 3 visible": "visible",
|
329 |
"Attribute 3 global": 1,
|
330 |
"Meta: outline": parents["Formatted_Agenda"],
|
331 |
+
"Meta: days": parents["MetaDays"],
|
332 |
"Meta: location": "Virtual",
|
333 |
"Meta: overview": parents["Target Audience"],
|
334 |
"Meta: objectives": parents["Formatted_Objectives"],
|
|
|
371 |
"Attribute 3 visible": "visible",
|
372 |
"Attribute 3 global": 1,
|
373 |
"Meta: outline": dsorted["Formatted_Agenda"],
|
374 |
+
"Meta: days": dsorted["MetaDays"],
|
375 |
"Meta: location": "Virtual",
|
376 |
"Meta: overview": dsorted["Target Audience"],
|
377 |
"Meta: objectives": dsorted["Formatted_Objectives"],
|
|
|
395 |
out.seek(0)
|
396 |
return out
|
397 |
|
398 |
+
# ββ Gradio interface ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
399 |
+
|
400 |
def process_files(schedule: gr.File, previous: gr.File | None) -> str:
|
401 |
csv_bytes = convert(schedule.name, previous.name if previous else None)
|
402 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
|
|
|
410 |
gr.File(label="Previous WooCommerce CSV (optional)", file_types=[".csv"]),
|
411 |
],
|
412 |
outputs=gr.File(label="Download WooCommerce CSV"),
|
413 |
+
title="NetCom β WooCommerce CSV Processor (TryΒ 3)",
|
414 |
description=(
|
415 |
"1. Upload the **latest NetCom schedule** file.\n"
|
416 |
"2. *(Optional)* Upload the **WooCommerce CSV** generated by a previous run to "
|