File size: 4,934 Bytes
033b96e
5ac4fa3
033b96e
 
96606a5
033b96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96606a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eb8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac4fa3
 
 
b8eb8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ac4fa3
 
 
b8eb8a3
 
 
 
 
c0b77e8
96606a5
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eb8a3
96606a5
b8eb8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96606a5
 
 
5268ae5
b8eb8a3
5268ae5
96606a5
033b96e
 
 
 
b8eb8a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json
import os
import gradio as gr
from textblob import TextBlob
from snownlp import SnowNLP

def sentiment_analysis(text: str) -> str:
    '''
    Analyse the sentiment of the given text

    Args:
        text (str): The text to analyse

    Returns:
        str: A JSON string containing polarity, subjectivity, and assessment
    '''
    blob = TextBlob(text)
    sentiment = blob.sentiment
    
    result = {
        'polarity': round(sentiment.polarity, 2), # -1 (negative) to 1 (positive)
        'subjectivity': round(sentiment.subjectivity, 2), # 0 (objective) to 1 (subjective)
        'assessment': 'positive' if sentiment.polarity > 0 else 'negative' if sentiment.polarity < 0 else 'neutral'
    }

    return json.dumps(result)


def chinese_sentiment_analysis(text: str) -> str:
    '''
    Analyse the sentiment of the given Chinese text

    Args:
        text (str): The text to analyse

    Returns:
        str: A JSON string containing polarity, subjectivity, and assessment
    '''
    s = SnowNLP(text)
    
    # SnowNLP 的情感分析返回值範圍是 0 到 1,0 表示負面,1 表示正面
    polarity = s.sentiments
    subjectivity = None # SnowNLP 不提供主觀性評估,可設為 None 或其他值
    
    result = {
        'polarity': round(polarity, 2), # 0 (negative) to 1 (positive)
        'subjectivity': subjectivity, # SnowNLP 不提供主觀性評估
        'assessment': 'positive' if polarity > 0.5 else 'negative' if polarity < 0.5 else 'neutral'
    }

    return json.dumps(result)


def batch_sentiment_analysis(file_path: str) -> str:
    '''
    Batch process sentiment analysis from JSON file
    
    Args:
        file_path (str): Path to JSON file with {text: ''} format
    
    Returns:
        str: JSON string with analysis results in values
    '''
    with open(file_path, 'r', encoding = 'utf-8') as f:
        data = json.load(f)
    
    for key in data:
        analysis_result = json.loads( sentiment_analysis(key) )
        data[key] = analysis_result
    
    dir_name = os.path.dirname(file_path)
    base_name = os.path.basename(file_path)
    output_path = os.path.join(dir_name, f'processed_{base_name}')
    with open(output_path, 'w', encoding = 'utf-8') as f:
        json.dump(data, f, ensure_ascii = False, indent = 2)
    
    return output_path


def batch_chinese_sentiment_analysis(file_path: str) -> str:
    '''
    Batch process Chinese sentiment analysis from JSON file
    
    Args:
        file_path (str): Path to JSON file with {text: ''} format
    
    Returns:
        str: JSON string with analysis results in values
    '''
    with open(file_path, 'r', encoding = 'utf-8') as f:
        data = json.load(f)
    
    for key in data:
        analysis_result = json.loads( chinese_sentiment_analysis(key) )
        data[key] = analysis_result
    
    dir_name = os.path.dirname(file_path)
    base_name = os.path.basename(file_path)
    output_path = os.path.join(dir_name, f'processed_{base_name}')
    with open(output_path, 'w', encoding = 'utf-8') as f:
        json.dump(data, f, ensure_ascii = False, indent = 2)
    
    return output_path

# gradio interface
demo = gr.TabbedInterface(
    [
        gr.Interface(
            fn = sentiment_analysis, 
            inputs = gr.Textbox(placeholder = 'Enter text to analyse...'), 
            outputs = gr.Textbox(), 
            title = 'Text Sentiment Analysis', 
            description = 'Analyse the sentiment of text using TextBlob', 
            api_name = 'sentiment_analysis'
        ),
        gr.Interface(
            fn = chinese_sentiment_analysis, 
            inputs = gr.Textbox(placeholder = '要分析的中文...'), 
            outputs = gr.Textbox(), 
            title = '中文情感分析', 
            description = 'Analyse the sentiment of Chinese text using SnowNLP', 
            api_name = 'chinese_sentiment_analysis'
        ),
        gr.Interface(
            fn = batch_sentiment_analysis,
            inputs = gr.File(label = 'Upload JSON File'),
            outputs = gr.File(label = 'Download Results'),
            title = 'Batch Sentiment Analysis',
            description = 'Process JSON file with multiple texts (English)',
            api_name = 'batch_sentiment_analysis'
        ),
        gr.Interface(
            fn = batch_chinese_sentiment_analysis,
            inputs = gr.File(label = '上傳JSON文件'),
            outputs = gr.File(label = '下載分析結果'),
            title = '批量中文情感分析',
            description = 'Batch process Chinese sentiment analysis from JSON file',
            api_name = 'batch_chinese_sentiment_analysis'
        )
    ],
    [
        'sentiment analysis',
        '中文情感分析',
        'batch processing',
        '批次中文情感分析'
    ]
)

# Launch the interface and MCP server
if __name__ == '__main__':
    demo.launch(mcp_server = True)