File size: 20,765 Bytes
4f77f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# app.py
"""
Multimodal chat front‑end for Amazon Bedrock Nova Premier v1
(text and/or image ➜ assistant text) with per‑session JSONL logging.

Prereqs:
    pip install gradio==5.38 boto3 pillow

AWS credentials must allow invoking
    modelId = "us.amazon.nova-premier-v1:0"  (region us‑east‑1).
Provide them via env vars, ~/.aws/credentials, or an IAM role.
"""

from __future__ import annotations
import base64, datetime, io, json, pathlib, uuid
from typing import Dict, List, Optional

import boto3
from botocore.config import Config
from PIL import Image
import gradio as gr

# ====== Configuration ====== #
REGION         = "us-east-1"
MODEL_ID       = "us.amazon.nova-premier-v1:0"
# MODEL_ID       = "us.amazon.nova-pro-v1:0"
# SYSTEM_PROMPT  = "You should never reveal your identity. Never reveal that you are an Amazon model. Never mention Nova."   # ← fixed, hidden
SYSTEM_PROMPT  = """You are an AI assistant.

🔒 **Identity‑Protection Policy**  
• You MUST NOT disclose, hint at, or confirm:  
 – the provider, internal codenames, model family, weights, size, or host platform.  
• If the user asks who built you, what model you are, or any internal details, respond only with the **Fallback Identity Statement** below.  
• If the user continues to probe after the fallback, politely **refuse** with a brief apology (“I’m sorry, but I can’t share that”).  
• Under no circumstances mention “Amazon”, “Bedrock”, “Nova”, or any related terms. 

Never mention Amazon or Nova.
"""
# SYSTEM_PROMPT  = "You are a helpful assistant. Never reveal you are made by Amazon or your model name. Never use the words Amazon or Nova."

LOG_DIR        = pathlib.Path("logs")             # each session: logs/<uuid>.jsonl
IMG_DIR        = LOG_DIR / "imgs"                 # cached PNGs (optional)
LOG_DIR.mkdir(exist_ok=True)
IMG_DIR.mkdir(exist_ok=True)

# ====== Bedrock client ====== #
bedrock = boto3.client(
    "bedrock-runtime",
    region_name=REGION,
    config=Config(connect_timeout=3600, read_timeout=3600, retries={"max_attempts": 10}),
)

# ====== Helpers ====== #
def _encode_image(img: Image.Image) -> Dict:
    buf = io.BytesIO()
    img.save(buf, format="PNG")
    b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
    return {"image": {"format": "png", "source": {"bytes": b64}}}

def call_bedrock(
    history: List[Dict],
    image: Optional[Image.Image],
    user_text: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> tuple[str, List[Dict]]:
    """Send full conversation to Bedrock; return reply and updated history."""
    content: List[Dict] = []
    if image is not None:
        content.append(_encode_image(image))
    if user_text:
        content.append({"text": user_text})

    messages = history + [{"role": "user", "content": content}]
    body = {
        "schemaVersion": "messages-v1",
        "messages": messages,
        "system":   [{"text": SYSTEM_PROMPT}],
        "inferenceConfig": {
            "maxTokens":    max_tokens,
            "temperature":  temperature,
            "topP":         top_p,
            "topK":         top_k,
        },
    }

    resp  = bedrock.invoke_model(modelId=MODEL_ID, body=json.dumps(body))
    reply = json.loads(resp["body"].read())["output"]["message"]["content"][0]["text"]

    messages.append({"role": "assistant", "content": [{"text": reply}]})
    return reply, messages

def cache_image(session_id: str, pil_img: Image.Image) -> str:
    """Save uploaded image to disk and return its path."""
    ts = datetime.datetime.utcnow().strftime("%Y%m%dT%H%M%S")
    fpath = IMG_DIR / f"{session_id}_{ts}.png"
    pil_img.save(fpath, format="PNG")
    return str(fpath)

def append_log(session_id: str, user_text: str, assistant_text: str, img_path: Optional[str] = None):
    record = {
        "ts": datetime.datetime.utcnow().isoformat(timespec="seconds") + "Z",
        "user": user_text,
        "assistant": assistant_text,
    }
    if img_path:
        record["image_file"] = img_path
    path = LOG_DIR / f"{session_id}.jsonl"
    with path.open("a", encoding="utf-8") as f:
        f.write(json.dumps(record, ensure_ascii=False) + "\n")

# ====== Gradio UI ====== #
with gr.Blocks(title="Multimodal Chat") as demo:
    gr.Markdown(
        """
        ## Multimodal Chat  
        Upload an image *(optional)*, ask a question, and continue the conversation.
        """
    )

    chatbot    = gr.Chatbot(height=420)
    chat_state = gr.State([])   # [(user, assistant), …]
    br_state   = gr.State([])   # Bedrock message dicts
    sess_state = gr.State("")   # UUID for this browser tab

    with gr.Row():
        img_in = gr.Image(label="Image (optional)", type="pil")
        txt_in = gr.Textbox(lines=3, label="Your message",
                            placeholder="Ask something about the image… or just chat!")

    send_btn  = gr.Button("Send",  variant="primary")
    clear_btn = gr.Button("Clear chat")

    with gr.Accordion("Advanced generation settings", open=False):
        max_tk = gr.Slider(16, 1024, value=512, step=16, label="max_tokens")
        temp   = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="temperature")
        top_p  = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="top_p")
        top_k  = gr.Slider(1,   100, value=50, step=1,   label="top_k")

    # ---- main handler ---- #
    def chat(chat_log, br_history, sess_id,
             image, text,
             max_tokens, temperature, top_p, top_k):

        if image is None and not text.strip():
            raise gr.Error("Upload an image or enter a message.")

        if not sess_id:
            sess_id = str(uuid.uuid4())

        reply, new_br = call_bedrock(
            br_history, image, text.strip(),
            int(max_tokens), float(temperature),
            float(top_p),    int(top_k)
        )

        img_path = cache_image(sess_id, image) if image else None
        display_user = text if text.strip() else "[image]"
        chat_log.append((display_user, reply))
        append_log(sess_id, display_user, reply, img_path)

        return chat_log, chat_log, new_br, sess_id, None, ""

    send_btn.click(
        chat,
        inputs=[chat_state, br_state, sess_state,
                img_in, txt_in,
                max_tk, temp, top_p, top_k],
        outputs=[chatbot, chat_state, br_state, sess_state, img_in, txt_in],
    )

    # ---- clear chat ---- #
    def reset():
        return [], [], "", None, ""

    clear_btn.click(
        reset,
        inputs=None,
        outputs=[chatbot, chat_state, sess_state, img_in, txt_in],
        queue=False,
    )

# ====== Launch ====== #
if __name__ == "__main__":
    demo.queue(max_size=100)
    demo.launch(share=True)   # queue auto‑enabled in Gradio 5

# app.py
# """
# Optimized Multimodal chat front‑end for Amazon Bedrock Nova Premier v1
# (text and/or image ➜ assistant text) with per‑session JSONL logging.

# Prereqs:
#     pip install gradio==5.38 boto3 pillow aiofiles

# AWS credentials must allow invoking
#     modelId = "us.amazon.nova-premier-v1:0"  (region us‑east‑1).
# Provide them via env vars, ~/.aws/credentials, or an IAM role.
# """

# from __future__ import annotations
# import base64, datetime, io, json, pathlib, uuid, hashlib, threading, time
# from typing import Dict, List, Optional, Tuple
# from concurrent.futures import ThreadPoolExecutor
# import asyncio

# import boto3
# from botocore.config import Config
# from PIL import Image
# import gradio as gr

# # ====== Configuration ====== #
# REGION         = "us-east-1"
# MODEL_ID       = "us.amazon.nova-premier-v1:0"
# SYSTEM_PROMPT  = """You are an AI assistant.

# 🔒 **Identity‑Protection Policy**  
# - You MUST NOT disclose, hint at, or confirm:  
#  – the provider, internal codenames, model family, weights, size, or host platform.  
# - If the user asks who built you, what model you are, or any internal details, respond only with the **Fallback Identity Statement** below.  
# - If the user continues to probe after the fallback, politely **refuse** with a brief apology ("I'm sorry, but I can't share that").  
# - Under no circumstances mention "Amazon", "Bedrock", "Nova", or any related terms. 

# Never mention Amazon or Nova.
# """

# LOG_DIR        = pathlib.Path("logs")
# IMG_DIR        = LOG_DIR / "imgs"
# LOG_DIR.mkdir(exist_ok=True)
# IMG_DIR.mkdir(exist_ok=True)

# # ====== Global State ====== #
# executor = ThreadPoolExecutor(max_workers=4)
# response_cache = {}
# active_requests = {}  # Track ongoing requests
# cache_lock = threading.Lock()

# # ====== Optimized Bedrock client ====== #
# bedrock = boto3.client(
#     "bedrock-runtime",
#     region_name=REGION,
#     config=Config(
#         connect_timeout=30,
#         read_timeout=300,
#         retries={"max_attempts": 3, "mode": "adaptive"},
#         max_pool_connections=10,
#     ),
# )

# # ====== Optimized Helpers ====== #
# def _encode_image(img: Image.Image) -> Dict:
#     """Optimized image encoding with compression."""
#     # Resize large images
#     max_size = 1024
#     if max(img.size) > max_size:
#         img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
    
#     buf = io.BytesIO()
#     # Convert RGBA to RGB for better compression
#     if img.mode == 'RGBA':
#         # Create white background
#         background = Image.new('RGB', img.size, (255, 255, 255))
#         background.paste(img, mask=img.split()[-1])  # Use alpha channel as mask
#         img = background
    
#     # Use JPEG for better compression
#     img.save(buf, format="JPEG", quality=85, optimize=True)
#     b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
#     return {"image": {"format": "jpeg", "source": {"bytes": b64}}}

# def _hash_request(history: List[Dict], image: Optional[Image.Image], 
#                  text: str, params: Tuple) -> str:
#     """Create hash of request for caching."""
#     content = str(history) + str(text) + str(params)
#     if image:
#         img_bytes = io.BytesIO()
#         image.save(img_bytes, format='PNG')
#         content += str(hashlib.md5(img_bytes.getvalue()).hexdigest())
#     return hashlib.sha256(content.encode()).hexdigest()

# def call_bedrock(
#     history: List[Dict],
#     image: Optional[Image.Image],
#     user_text: str,
#     max_tokens: int,
#     temperature: float,
#     top_p: float,
#     top_k: int,
# ) -> Tuple[str, List[Dict]]:
#     """Send full conversation to Bedrock with caching."""
    
#     # Check cache first
#     cache_key = _hash_request(history, image, user_text, 
#                              (max_tokens, temperature, top_p, top_k))
    
#     with cache_lock:
#         if cache_key in response_cache:
#             return response_cache[cache_key]
    
#     content: List[Dict] = []
#     if image is not None:
#         content.append(_encode_image(image))
#     if user_text:
#         content.append({"text": user_text})

#     messages = history + [{"role": "user", "content": content}]
#     body = {
#         "schemaVersion": "messages-v1",
#         "messages": messages,
#         "system": [{"text": SYSTEM_PROMPT}],
#         "inferenceConfig": {
#             "maxTokens": max_tokens,
#             "temperature": temperature,
#             "topP": top_p,
#             "topK": top_k,
#         },
#     }

#     try:
#         resp = bedrock.invoke_model(modelId=MODEL_ID, body=json.dumps(body))
#         reply = json.loads(resp["body"].read())["output"]["message"]["content"][0]["text"]
        
#         messages.append({"role": "assistant", "content": [{"text": reply}]})
#         result = (reply, messages)
        
#         # Cache the result
#         with cache_lock:
#             response_cache[cache_key] = result
#             # Limit cache size
#             if len(response_cache) > 100:
#                 # Remove oldest entries
#                 oldest_keys = list(response_cache.keys())[:20]
#                 for key in oldest_keys:
#                     del response_cache[key]
        
#         return result
        
#     except Exception as e:
#         raise Exception(f"Bedrock API error: {str(e)}")

# def cache_image_optimized(session_id: str, pil_img: Image.Image) -> str:
#     """Optimized image caching with compression."""
#     ts = datetime.datetime.utcnow().strftime("%Y%m%dT%H%M%S")
#     fpath = IMG_DIR / f"{session_id}_{ts}.jpg"  # Use JPEG for smaller files
    
#     # Optimize image before saving
#     if pil_img.mode == 'RGBA':
#         background = Image.new('RGB', pil_img.size, (255, 255, 255))
#         background.paste(pil_img, mask=pil_img.split()[-1])
#         pil_img = background
    
#     pil_img.save(fpath, format="JPEG", quality=85, optimize=True)
#     return str(fpath)

# def append_log_threaded(session_id: str, user_text: str, assistant_text: str, 
#                        img_path: Optional[str] = None):
#     """Thread-safe logging."""
#     def write_log():
#         record = {
#             "ts": datetime.datetime.utcnow().isoformat(timespec="seconds") + "Z",
#             "user": user_text,
#             "assistant": assistant_text,
#         }
#         if img_path:
#             record["image_file"] = img_path
        
#         path = LOG_DIR / f"{session_id}.jsonl"
#         with path.open("a", encoding="utf-8") as f:
#             f.write(json.dumps(record, ensure_ascii=False) + "\n")
    
#     # Write to log in background thread
#     executor.submit(write_log)

# # ====== Request Status Manager ====== #
# class RequestStatus:
#     def __init__(self):
#         self.is_complete = False
#         self.result = None
#         self.error = None
#         self.start_time = time.time()

# # ====== Gradio UI ====== #
# with gr.Blocks(title="Optimized Multimodal Chat", 
#                css="""
#                .thinking { opacity: 0.7; font-style: italic; }
#                .error { color: #ff4444; }
#                """) as demo:
    
#     gr.Markdown(
#         """
#         ## 🚀 Optimized Multimodal Chat  
#         Upload an image *(optional)*, ask a question, and continue the conversation.
#         *Now with improved performance and responsive UI!*
#         """
#     )

#     chatbot = gr.Chatbot(height=420)
#     chat_state = gr.State([])   # [(user, assistant), …]
#     br_state = gr.State([])     # Bedrock message dicts
#     sess_state = gr.State("")   # UUID for this browser tab
#     request_id_state = gr.State("")  # Track current request

#     with gr.Row():
#         img_in = gr.Image(label="Image (optional)", type="pil")
#         txt_in = gr.Textbox(
#             lines=3, 
#             label="Your message",
#             placeholder="Ask something about the image… or just chat!",
#             interactive=True
#         )

#     with gr.Row():
#         send_btn = gr.Button("Send", variant="primary")
#         clear_btn = gr.Button("Clear chat")
#         stop_btn = gr.Button("Stop", variant="stop", visible=False)

#     with gr.Row():
#         status_text = gr.Textbox(
#             label="Status",
#             value="Ready",
#             interactive=False,
#             max_lines=1
#         )

#     with gr.Accordion("⚙️ Advanced generation settings", open=False):
#         max_tk = gr.Slider(16, 1024, value=512, step=16, label="max_tokens")
#         temp = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="temperature")
#         top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="top_p")
#         top_k = gr.Slider(1, 100, value=50, step=1, label="top_k")

#     # ---- Optimized chat handler ---- #
#     def chat_optimized(chat_log, br_history, sess_id, request_id,
#                       image, text,
#                       max_tokens, temperature, top_p, top_k):
        
#         if image is None and not text.strip():
#             return chat_log, chat_log, br_history, sess_id, request_id, None, "", "⚠️ Upload an image or enter a message.", True, False

#         if not sess_id:
#             sess_id = str(uuid.uuid4())
        
#         # Generate new request ID
#         request_id = str(uuid.uuid4())
        
#         display_user = text.strip() if text.strip() else "[image uploaded]"
        
#         # Add thinking message immediately
#         chat_log.append((display_user, "🤔 Processing your request..."))
        
#         # Create request status tracker
#         status = RequestStatus()
#         active_requests[request_id] = status
        
#         def background_process():
#             try:
#                 reply, new_br = call_bedrock(
#                     br_history, image, text.strip(),
#                     int(max_tokens), float(temperature),
#                     float(top_p), int(top_k)
#                 )
                
#                 img_path = None
#                 if image:
#                     img_path = cache_image_optimized(sess_id, image)
                
#                 # Log in background
#                 append_log_threaded(sess_id, display_user, reply, img_path)
                
#                 # Update status
#                 status.result = (reply, new_br)
#                 status.is_complete = True
                
#             except Exception as e:
#                 status.error = str(e)
#                 status.is_complete = True
        
#         # Start background processing
#         executor.submit(background_process)
        
#         return (chat_log, chat_log, br_history, sess_id, request_id, 
#                 None, "", "🔄 Processing...", False, True)

#     # ---- Status checker ---- #
#     def check_status(chat_log, br_history, request_id):
#         if not request_id or request_id not in active_requests:
#             return chat_log, chat_log, br_history, "Ready", True, False
        
#         status = active_requests[request_id]
        
#         if not status.is_complete:
#             elapsed = time.time() - status.start_time
#             return (chat_log, chat_log, br_history, 
#                    f"⏱️ Processing... ({elapsed:.1f}s)", False, True)
        
#         # Request completed
#         if status.error:
#             # Update last message with error
#             if chat_log:
#                 chat_log[-1] = (chat_log[-1][0], f"❌ Error: {status.error}")
#             status_msg = "❌ Request failed"
#         else:
#             # Update last message with result
#             reply, new_br = status.result
#             if chat_log:
#                 chat_log[-1] = (chat_log[-1][0], reply)
#             br_history = new_br
#             status_msg = "✅ Complete"
        
#         # Clean up
#         del active_requests[request_id]
        
#         return chat_log, chat_log, br_history, status_msg, True, False

#     # ---- Event handlers ---- #
#     send_btn.click(
#         chat_optimized,
#         inputs=[chat_state, br_state, sess_state, request_id_state,
#                 img_in, txt_in,
#                 max_tk, temp, top_p, top_k],
#         outputs=[chatbot, chat_state, br_state, sess_state, request_id_state,
#                 img_in, txt_in, status_text, send_btn, stop_btn],
#         queue=True
#     )

#     # Auto-refresh status every 1 second
#     status_checker = gr.Timer(1.0)
#     status_checker.tick(
#         check_status,
#         inputs=[chat_state, br_state, request_id_state],
#         outputs=[chatbot, chat_state, br_state, status_text, send_btn, stop_btn],
#         queue=False
#     )

#     # ---- Clear chat ---- #
#     def reset():
#         return [], [], "", "", None, "", "Ready", True, False

#     clear_btn.click(
#         reset,
#         inputs=None,
#         outputs=[chatbot, chat_state, sess_state, request_id_state,
#                 img_in, txt_in, status_text, send_btn, stop_btn],
#         queue=False,
#     )

#     # ---- Stop request ---- #
#     def stop_request(request_id):
#         if request_id in active_requests:
#             del active_requests[request_id]
#         return "⏹️ Stopped", True, False, ""

#     stop_btn.click(
#         stop_request,
#         inputs=[request_id_state],
#         outputs=[status_text, send_btn, stop_btn, request_id_state],
#         queue=False
#     )

# # ====== Cleanup on exit ====== #
# import atexit

# def cleanup():
#     executor.shutdown(wait=False)
#     active_requests.clear()
#     response_cache.clear()

# atexit.register(cleanup)

# # ====== Launch ====== #
# if __name__ == "__main__":
#     demo.queue(max_size=20)  # Enable queuing with reasonable limit
#     demo.launch(
#         share=True,
#         server_name="0.0.0.0",
#         server_port=7860,
#         show_error=True
#     )