Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,578 Bytes
c1ad781 33c9103 c1ad781 33c9103 c1ad781 33c9103 c1ad781 33c9103 c1ad781 33c9103 c1ad781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
# Download required models from Hugging Face
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="kim2091/UltraSharp", filename="4x-UltraSharp.pth", local_dir="models/upscale_models")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping."""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""Recursively looks at parent folders starting from the given path until it finds the given name."""
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""Add 'ComfyUI' to the sys.path"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path."""
try:
from main import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
except ImportError:
try:
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
except ImportError:
print("Could not import extra config. Continuing without extra model paths.")
add_comfyui_directory_to_sys_path()
try:
add_extra_model_paths()
except Exception as e:
print(f"Warning: Could not load extra model paths: {e}")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS"""
try:
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Check if we're already in an event loop
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# We're in an existing loop, use it
pass
else:
# Loop exists but not running, set a new one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
except RuntimeError:
# No loop exists, create one
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
except Exception as e:
print(f"Warning: Could not initialize custom nodes: {e}")
print("Continuing with basic ComfyUI nodes only...")
from nodes import NODE_CLASS_MAPPINGS
# Pre-load models outside the decorated function for ZeroGPU efficiency
try:
import_custom_nodes()
# Initialize model loaders
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_54 = dualcliploader.load_clip(
clip_name1="clip_l.safetensors",
clip_name2="t5xxl_fp16.safetensors",
type="flux",
device="default",
)
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
upscalemodelloader_44 = upscalemodelloader.load_model(model_name="4x-UltraSharp.pth")
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_55 = vaeloader.load_vae(vae_name="ae.safetensors")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_58 = unetloader.load_unet(
unet_name="flux1-dev.safetensors", weight_dtype="default"
)
downloadandloadflorence2model = NODE_CLASS_MAPPINGS["DownloadAndLoadFlorence2Model"]()
downloadandloadflorence2model_52 = downloadandloadflorence2model.loadmodel(
model="microsoft/Florence-2-large", precision="fp16", attention="sdpa"
)
# Pre-load models to GPU for efficiency
try:
from comfy import model_management
model_loaders = [dualcliploader_54, vaeloader_55, unetloader_58, downloadandloadflorence2model_52]
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
model_management.load_models_gpu(valid_models)
print("Models successfully pre-loaded to GPU")
except Exception as e:
print(f"Warning: Could not pre-load models to GPU: {e}")
print("ComfyUI setup completed successfully!")
except Exception as e:
print(f"Error during ComfyUI setup: {e}")
print("Please check that all required custom nodes are installed.")
raise
@spaces.GPU(duration=120) # Adjust duration based on your workflow speed
def enhance_image(image_input, upscale_factor, steps, cfg_scale, denoise_strength, guidance_scale):
"""
Main function to enhance and upscale images using Florence-2 captioning and FLUX upscaling
"""
try:
with torch.inference_mode():
# Handle different input types (file upload vs URL)
if isinstance(image_input, str) and image_input.startswith(('http://', 'https://')):
# Load from URL
load_image_from_url_mtb = NODE_CLASS_MAPPINGS["Load Image From Url (mtb)"]()
load_image_result = load_image_from_url_mtb.load(url=image_input)
else:
# Load from uploaded file
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
load_image_result = loadimage.load_image(image=image_input)
# Generate detailed caption using Florence-2
florence2run = NODE_CLASS_MAPPINGS["Florence2Run"]()
florence2run_51 = florence2run.encode(
text_input="",
task="more_detailed_caption",
fill_mask=True,
keep_model_loaded=False,
max_new_tokens=1024,
num_beams=3,
do_sample=True,
output_mask_select="",
seed=random.randint(1, 2**64),
image=get_value_at_index(load_image_result, 0),
florence2_model=get_value_at_index(downloadandloadflorence2model_52, 0),
)
# Encode the generated caption
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text=get_value_at_index(florence2run_51, 2),
clip=get_value_at_index(dualcliploader_54, 0),
)
# Encode empty negative prompt
cliptextencode_42 = cliptextencode.encode(
text="", clip=get_value_at_index(dualcliploader_54, 0)
)
# Set up upscale factor
primitivefloat = NODE_CLASS_MAPPINGS["PrimitiveFloat"]()
primitivefloat_60 = primitivefloat.execute(value=upscale_factor)
# Apply FLUX guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
fluxguidance_26 = fluxguidance.append(
guidance=guidance_scale,
conditioning=get_value_at_index(cliptextencode_6, 0)
)
# Perform ultimate upscaling
ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
ultimatesdupscale_50 = ultimatesdupscale.upscale(
upscale_by=get_value_at_index(primitivefloat_60, 0),
seed=random.randint(1, 2**64),
steps=steps,
cfg=cfg_scale,
sampler_name="euler",
scheduler="normal",
denoise=denoise_strength,
mode_type="Linear",
tile_width=1024,
tile_height=1024,
mask_blur=8,
tile_padding=32,
seam_fix_mode="None",
seam_fix_denoise=1,
seam_fix_width=64,
seam_fix_mask_blur=8,
seam_fix_padding=16,
force_uniform_tiles=True,
tiled_decode=False,
image=get_value_at_index(load_image_result, 0),
model=get_value_at_index(unetloader_58, 0),
positive=get_value_at_index(fluxguidance_26, 0),
negative=get_value_at_index(cliptextencode_42, 0),
vae=get_value_at_index(vaeloader_55, 0),
upscale_model=get_value_at_index(upscalemodelloader_44, 0),
)
# Save the result
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
saveimage_43 = saveimage.save_images(
filename_prefix="enhanced_image",
images=get_value_at_index(ultimatesdupscale_50, 0),
)
# Return the path to the saved image
saved_path = f"output/{saveimage_43['ui']['images'][0]['filename']}"
# Also return the generated caption for user feedback
generated_caption = get_value_at_index(florence2run_51, 2)
return saved_path, generated_caption
except Exception as e:
print(f"Error in enhance_image: {str(e)}")
raise gr.Error(f"Enhancement failed: {str(e)}")
# Create the Gradio interface
def create_interface():
with gr.Blocks(
title="π AI Image Enhancer - Florence-2 + FLUX",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
.result-gallery {
min-height: 400px;
}
"""
) as app:
gr.HTML("""
<div class="main-header">
<h1>π¨ AI Image Enhancer</h1>
<p>Upload an image or provide a URL to enhance it using Florence-2 captioning and FLUX upscaling</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Input Settings</h3>")
with gr.Tabs():
with gr.TabItem("π Upload Image"):
image_upload = gr.Image(
label="Upload Image",
type="filepath",
height=300
)
with gr.TabItem("π Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
)
gr.HTML("<h3>βοΈ Enhancement Settings</h3>")
upscale_factor = gr.Slider(
minimum=1.0,
maximum=4.0,
value=2.0,
step=0.5,
label="Upscale Factor",
info="How much to upscale the image"
)
steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=5,
label="Steps",
info="Number of denoising steps"
)
cfg_scale = gr.Slider(
minimum=0.5,
maximum=10.0,
value=1.0,
step=0.5,
label="CFG Scale",
info="Classifier-free guidance scale"
)
denoise_strength = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.1,
label="Denoise Strength",
info="How much to denoise the image"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=3.5,
step=0.5,
label="Guidance Scale",
info="FLUX guidance strength"
)
enhance_btn = gr.Button(
"π Enhance Image",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.HTML("<h3>π Results</h3>")
output_image = gr.Image(
label="Enhanced Image",
type="filepath",
height=400,
interactive=False
)
generated_caption = gr.Textbox(
label="Generated Caption",
placeholder="The AI-generated caption will appear here...",
lines=3,
interactive=False
)
gr.HTML("""
<div style="margin-top: 1rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<h4>π‘ How it works:</h4>
<ol>
<li>Florence-2 analyzes your image and generates a detailed caption</li>
<li>FLUX uses this caption to guide the upscaling process</li>
<li>The result is an enhanced, higher-resolution image</li>
</ol>
</div>
""")
# Event handlers
def process_image(img_upload, img_url, upscale_f, steps_val, cfg_val, denoise_val, guidance_val):
# Determine input source
image_input = img_upload if img_upload is not None else img_url
if not image_input:
raise gr.Error("Please provide an image (upload or URL)")
return enhance_image(image_input, upscale_f, steps_val, cfg_val, denoise_val, guidance_val)
enhance_btn.click(
fn=process_image,
inputs=[
image_upload,
image_url,
upscale_factor,
steps,
cfg_scale,
denoise_strength,
guidance_scale
],
outputs=[output_image, generated_caption]
)
# Example inputs
gr.Examples(
examples=[
[None, "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg", 2.0, 25, 1.0, 0.3, 3.5],
[None, "https://picsum.photos/512/512", 2.0, 20, 1.5, 0.4, 4.0],
],
inputs=[
image_upload,
image_url,
upscale_factor,
steps,
cfg_scale,
denoise_strength,
guidance_scale
]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=True, server_name="0.0.0.0", server_port=7860) |