fluxhdupscaler / app.py
comrender's picture
Update app.py
597b21e verified
raw
history blame
9.16 kB
import warnings
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from diffusers import AutoPipelineForImage2Image
import random
import numpy as np
import os
import spaces
try:
import basicsr
# Assume basicsr interpolation setup
interpolation = "basicsr" # Placeholder for actual basicsr usage
except ImportError:
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
interpolation = Image.LANCZOS
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load FLUX img2img pipeline
pipe = AutoPipelineForImage2Image.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
pipe.enable_vae_tiling() # To help with memory for large images
# Initialize Florence model with float32 to avoid dtype mismatch
florence_model = Florence2ForConditionalGeneration.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Florence caption function
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<DETAILED_CAPTION>"]
# Tiled FLUX img2img function with fix for small dimensions and overlap
def tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale, tile_size=512, overlap=64):
width, height = image.size
# Resize to multiple of 16 to avoid dimension warnings
width = (width // 16) * 16 if width >= 16 else 16
height = (height // 16) * 16 if height >= 16 else 16
if width != image.size[0] or height != image.size[1]:
image = image.resize((width, height), resample=interpolation)
result = Image.new('RGB', (width, height))
stride = tile_size - overlap
# For simplicity, tile in both directions, but handle small sizes
for y in range(0, height, stride):
for x in range(0, width, stride):
tile_left = x
tile_top = y
tile_right = min(x + tile_size, width)
tile_bottom = min(y + tile_size, height)
tile = image.crop((tile_left, tile_top, tile_right, tile_bottom))
# Skip if tile is too small
if tile.width < 16 or tile.height < 16:
continue
# Generate with img2img
generated_tile = pipe(
prompt,
image=tile,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images[0]
generated_tile = generated_tile.resize(tile.size) # Ensure size match
# Paste without blend if first tile
if x == 0 and y == 0:
result.paste(generated_tile, (tile_left, tile_top))
continue
# Blend with previous if overlap
if y > 0: # Vertical blend
effective_overlap = min(overlap, tile_bottom - tile_top, result.crop((tile_left, tile_top - overlap, tile_right, tile_top)).height)
if effective_overlap > 0:
mask = Image.new('L', (tile_right - tile_left, effective_overlap))
for i in range(mask.width):
for j in range(mask.height):
# Fixed: use effective_overlap for division and range
mask.putpixel((i, j), int(255 * (j / (effective_overlap - 1 if effective_overlap > 1 else 1))))
# Blend the top part of the tile with the bottom of the previous
blend_region = Image.composite(
generated_tile.crop((0, 0, mask.width, mask.height)),
result.crop((tile_left, tile_top, tile_right, tile_top + mask.height)),
mask
)
result.paste(blend_region, (tile_left, tile_top))
# Paste the non-overlap part
result.paste(generated_tile.crop((0, effective_overlap, generated_tile.width, generated_tile.height)), (tile_left, tile_top + effective_overlap))
else:
result.paste(generated_tile, (tile_left, tile_top))
# Similar for horizontal blend (if x > 0), implement analogously
if x > 0: # Horizontal blend
# Similar logic, but for left overlap, gradient horizontal
effective_overlap_h = min(overlap, tile_right - tile_left)
if effective_overlap_h > 0:
mask_h = Image.new('L', (effective_overlap_h, tile_bottom - tile_top))
for i in range(mask_h.width):
for j in range(mask_h.height):
mask_h.putpixel((i, j), int(255 * (i / (effective_overlap_h - 1 if effective_overlap_h > 1 else 1))))
# Blend left part
blend_region_h = Image.composite(
generated_tile.crop((0, 0, mask_h.width, mask_h.height)),
result.crop((tile_left, tile_top, tile_left + mask_h.width, tile_bottom)),
mask_h
)
result.paste(blend_region_h, (tile_left, tile_top))
# Paste non-overlap
result.paste(generated_tile.crop((effective_overlap_h, 0, generated_tile.width, generated_tile.height)), (tile_left + effective_overlap_h, tile_top))
else:
result.paste(generated_tile, (tile_left, tile_top))
return result
# Main enhance function
@spaces.GPU(duration=190)
def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength, progress=gr.Progress(track_tqdm=True)):
prompt = text_prompt
if image is not None:
prompt = florence_caption(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Use tiled if large, else direct
if image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE:
output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
else:
output_image = pipe(
prompt,
image=image,
generator=generator,
num_inference_steps=num_inference_steps,
width=width,
height=height,
guidance_scale=guidance_scale,
strength=strength
).images[0]
return output_image, prompt, seed
# Gradio interface
title = "<h1 align='center'>FLUX Image Enhancer with Florence-2 Captioner</h1>"
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
text_prompt = gr.Textbox(label="Text Prompt (if no image)")
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.8)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, value=5.0)
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
seed = gr.Number(value=42, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Width")
height = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Height")
submit = gr.Button("Enhance")
with gr.Column():
output_image = gr.Image(label="Enhanced Image")
output_prompt = gr.Textbox(label="Generated Prompt")
output_seed = gr.Number(label="Used Seed")
submit.click(
enhance_image,
inputs=[input_image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength],
outputs=[output_image, output_prompt, output_seed]
)
print("✅ All models loaded successfully!")
demo.launch(server_port=7860, server_name="0.0.0.0")