Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,15 +12,10 @@ from gradio_imageslider import ImageSlider
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
from basicsr.archs.rrdbnet_arch import RRDBNet
|
19 |
-
from basicsr.utils import img2tensor, tensor2img
|
20 |
-
USE_ESRGAN = True
|
21 |
-
except ImportError:
|
22 |
-
USE_ESRGAN = False
|
23 |
-
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
|
24 |
|
25 |
css = """
|
26 |
#col-container {
|
@@ -35,7 +30,7 @@ css = """
|
|
35 |
|
36 |
# Device setup
|
37 |
power_device = "ZeroGPU"
|
38 |
-
device = "cpu" # Start on CPU
|
39 |
|
40 |
# Get HuggingFace token
|
41 |
huggingface_token = os.getenv("HF_TOKEN")
|
@@ -50,85 +45,88 @@ model_path = snapshot_download(
|
|
50 |
token=huggingface_token,
|
51 |
)
|
52 |
|
53 |
-
# Load Florence-2 model
|
54 |
print("π₯ Loading Florence-2 model...")
|
55 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
56 |
"microsoft/Florence-2-large",
|
57 |
-
torch_dtype=torch.float32,
|
58 |
trust_remote_code=True,
|
59 |
attn_implementation="eager"
|
60 |
-
).to(device)
|
|
|
61 |
florence_processor = AutoProcessor.from_pretrained(
|
62 |
"microsoft/Florence-2-large",
|
63 |
trust_remote_code=True
|
64 |
)
|
65 |
|
66 |
-
# Load FLUX
|
67 |
print("π₯ Loading FLUX Img2Img...")
|
68 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
69 |
model_path,
|
70 |
-
torch_dtype=torch.float32
|
71 |
)
|
|
|
|
|
|
|
72 |
pipe.enable_vae_tiling()
|
73 |
pipe.enable_vae_slicing()
|
|
|
|
|
74 |
|
75 |
print("β
All models loaded successfully!")
|
76 |
|
77 |
-
# Download ESRGAN model if using
|
78 |
-
if USE_ESRGAN:
|
79 |
-
try:
|
80 |
-
esrgan_path = "4x-UltraSharp.pth"
|
81 |
-
if not os.path.exists(esrgan_path):
|
82 |
-
url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
|
83 |
-
print("π₯ Downloading ESRGAN model...")
|
84 |
-
with open(esrgan_path, "wb") as f:
|
85 |
-
f.write(requests.get(url).content)
|
86 |
-
esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
87 |
-
state_dict = torch.load(esrgan_path, map_location='cpu')['params_ema']
|
88 |
-
esrgan_model.load_state_dict(state_dict)
|
89 |
-
esrgan_model.eval()
|
90 |
-
print("β
ESRGAN model loaded!")
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Failed to load ESRGAN: {e}")
|
93 |
-
USE_ESRGAN = False
|
94 |
-
|
95 |
MAX_SEED = 1000000
|
96 |
-
MAX_PIXEL_BUDGET =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
def make_multiple_16(n):
|
100 |
-
"""Round
|
101 |
return ((n + 15) // 16) * 16
|
102 |
|
103 |
|
104 |
def generate_caption(image):
|
105 |
-
"""Generate
|
106 |
try:
|
107 |
-
#
|
108 |
-
if florence_model.device.type == "cuda":
|
109 |
-
florence_model.to(torch.float16)
|
110 |
-
|
111 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
inputs = florence_processor(
|
115 |
-
text=
|
116 |
images=image,
|
117 |
return_tensors="pt"
|
118 |
-
).to(
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
max_new_tokens=1024,
|
129 |
-
num_beams=3,
|
130 |
-
do_sample=True,
|
131 |
-
)
|
132 |
|
133 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
134 |
parsed_answer = florence_processor.post_process_generation(
|
@@ -138,213 +136,57 @@ def generate_caption(image):
|
|
138 |
)
|
139 |
|
140 |
caption = parsed_answer[task_prompt]
|
|
|
|
|
141 |
return caption
|
|
|
142 |
except Exception as e:
|
143 |
print(f"Caption generation failed: {e}")
|
144 |
-
return "
|
145 |
|
146 |
|
147 |
def process_input(input_image, upscale_factor):
|
148 |
-
"""Process input image
|
149 |
w, h = input_image.size
|
150 |
w_original, h_original = w, h
|
151 |
|
152 |
was_resized = False
|
153 |
|
|
|
154 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
155 |
-
|
156 |
-
|
157 |
-
)
|
158 |
-
|
159 |
-
|
160 |
-
)
|
161 |
-
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
162 |
-
scale = (target_input_pixels / (w * h)) ** 0.5
|
163 |
new_w = make_multiple_16(int(w * scale))
|
164 |
new_h = make_multiple_16(int(h * scale))
|
165 |
-
|
|
|
166 |
was_resized = True
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
"""Load image from URL"""
|
173 |
-
try:
|
174 |
-
response = requests.get(url, stream=True)
|
175 |
-
response.raise_for_status()
|
176 |
-
return Image.open(response.raw)
|
177 |
-
except Exception as e:
|
178 |
-
raise gr.Error(f"Failed to load image from URL: {e}")
|
179 |
-
|
180 |
-
|
181 |
-
def esrgan_upscale(image, scale=4):
|
182 |
-
"""Upscale image using ESRGAN or fallback to LANCZOS"""
|
183 |
-
if not USE_ESRGAN:
|
184 |
-
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
185 |
-
|
186 |
-
try:
|
187 |
-
img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
|
188 |
-
with torch.no_grad():
|
189 |
-
# Move model to same device as image tensor
|
190 |
-
if torch.cuda.is_available():
|
191 |
-
esrgan_model.to("cuda")
|
192 |
-
img = img.to("cuda")
|
193 |
-
output = esrgan_model(img.unsqueeze(0)).squeeze()
|
194 |
-
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
195 |
-
return Image.fromarray(output_img)
|
196 |
-
except Exception as e:
|
197 |
-
print(f"ESRGAN upscale failed: {e}, falling back to LANCZOS")
|
198 |
-
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
199 |
-
|
200 |
-
|
201 |
-
def create_blend_mask(width, height, overlap, edge_x, edge_y):
|
202 |
-
"""Create a gradient blend mask for smooth tile transitions"""
|
203 |
-
mask = Image.new('L', (width, height), 255)
|
204 |
-
pixels = mask.load()
|
205 |
-
|
206 |
-
# Horizontal blend (left edge)
|
207 |
-
if edge_x and overlap > 0:
|
208 |
-
for x in range(min(overlap, width)):
|
209 |
-
alpha = x / overlap
|
210 |
-
for y in range(height):
|
211 |
-
pixels[x, y] = int(255 * alpha)
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
for x in range(width):
|
218 |
-
# Combine with existing alpha if both edges
|
219 |
-
existing = pixels[x, y] / 255.0
|
220 |
-
combined = min(existing, alpha)
|
221 |
-
pixels[x, y] = int(255 * combined)
|
222 |
|
223 |
-
return
|
224 |
|
225 |
|
226 |
-
def
|
227 |
-
"""
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
overlap = make_multiple_16(overlap)
|
233 |
-
|
234 |
-
# If image is small enough, process without tiling
|
235 |
-
if w <= tile_size and h <= tile_size:
|
236 |
-
# Ensure dimensions are divisible by 16
|
237 |
-
new_w = make_multiple_16(w)
|
238 |
-
new_h = make_multiple_16(h)
|
239 |
-
|
240 |
-
if new_w != w or new_h != h:
|
241 |
-
padded_image = Image.new('RGB', (new_w, new_h))
|
242 |
-
padded_image.paste(image, (0, 0))
|
243 |
-
else:
|
244 |
-
padded_image = image
|
245 |
-
|
246 |
-
result = pipe(
|
247 |
-
prompt=prompt,
|
248 |
-
image=padded_image,
|
249 |
-
strength=strength,
|
250 |
-
num_inference_steps=steps,
|
251 |
-
guidance_scale=guidance,
|
252 |
-
height=new_h,
|
253 |
-
width=new_w,
|
254 |
-
generator=generator,
|
255 |
-
).images[0]
|
256 |
-
|
257 |
-
# Crop back to original size if padded
|
258 |
-
if new_w != w or new_h != h:
|
259 |
-
result = result.crop((0, 0, w, h))
|
260 |
-
|
261 |
-
return result
|
262 |
-
|
263 |
-
# Process with tiling for large images
|
264 |
-
output = Image.new('RGB', (w, h))
|
265 |
-
|
266 |
-
# Calculate tile positions
|
267 |
-
tiles = []
|
268 |
-
for y in range(0, h, tile_size - overlap):
|
269 |
-
for x in range(0, w, tile_size - overlap):
|
270 |
-
tile_w = min(tile_size, w - x)
|
271 |
-
tile_h = min(tile_size, h - y)
|
272 |
-
|
273 |
-
# Ensure tile dimensions are divisible by 16
|
274 |
-
tile_w_padded = make_multiple_16(tile_w)
|
275 |
-
tile_h_padded = make_multiple_16(tile_h)
|
276 |
-
|
277 |
-
tiles.append({
|
278 |
-
'x': x,
|
279 |
-
'y': y,
|
280 |
-
'w': tile_w,
|
281 |
-
'h': tile_h,
|
282 |
-
'w_padded': tile_w_padded,
|
283 |
-
'h_padded': tile_h_padded,
|
284 |
-
'edge_x': x > 0,
|
285 |
-
'edge_y': y > 0
|
286 |
-
})
|
287 |
-
|
288 |
-
# Process each tile
|
289 |
-
for i, tile_info in enumerate(tiles):
|
290 |
-
print(f"Processing tile {i+1}/{len(tiles)}...")
|
291 |
-
|
292 |
-
# Extract tile from image
|
293 |
-
tile = image.crop((
|
294 |
-
tile_info['x'],
|
295 |
-
tile_info['y'],
|
296 |
-
tile_info['x'] + tile_info['w'],
|
297 |
-
tile_info['y'] + tile_info['h']
|
298 |
-
))
|
299 |
-
|
300 |
-
# Pad if necessary
|
301 |
-
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
302 |
-
padded_tile = Image.new('RGB', (tile_info['w_padded'], tile_info['h_padded']))
|
303 |
-
padded_tile.paste(tile, (0, 0))
|
304 |
-
tile = padded_tile
|
305 |
-
|
306 |
-
# Process tile with FLUX
|
307 |
-
try:
|
308 |
-
gen_tile = pipe(
|
309 |
-
prompt=prompt,
|
310 |
-
image=tile,
|
311 |
-
strength=strength,
|
312 |
-
num_inference_steps=steps,
|
313 |
-
guidance_scale=guidance,
|
314 |
-
height=tile_info['h_padded'],
|
315 |
-
width=tile_info['w_padded'],
|
316 |
-
generator=generator,
|
317 |
-
).images[0]
|
318 |
-
|
319 |
-
# Crop back to original tile size if padded
|
320 |
-
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
321 |
-
gen_tile = gen_tile.crop((0, 0, tile_info['w'], tile_info['h']))
|
322 |
-
|
323 |
-
# Create blend mask if needed
|
324 |
-
if overlap > 0 and (tile_info['edge_x'] or tile_info['edge_y']):
|
325 |
-
mask = create_blend_mask(
|
326 |
-
tile_info['w'],
|
327 |
-
tile_info['h'],
|
328 |
-
overlap,
|
329 |
-
tile_info['edge_x'],
|
330 |
-
tile_info['edge_y']
|
331 |
-
)
|
332 |
-
|
333 |
-
# Composite with blending
|
334 |
-
output.paste(gen_tile, (tile_info['x'], tile_info['y']), mask)
|
335 |
-
else:
|
336 |
-
# Direct paste for first tile or no overlap
|
337 |
-
output.paste(gen_tile, (tile_info['x'], tile_info['y']))
|
338 |
-
|
339 |
-
except Exception as e:
|
340 |
-
print(f"Error processing tile: {e}")
|
341 |
-
# Fallback: paste original tile
|
342 |
-
output.paste(tile, (tile_info['x'], tile_info['y']))
|
343 |
-
|
344 |
-
return output
|
345 |
|
346 |
|
347 |
-
@spaces.GPU(duration=120
|
348 |
def enhance_image(
|
349 |
image_input,
|
350 |
image_url,
|
@@ -357,223 +199,254 @@ def enhance_image(
|
|
357 |
custom_prompt,
|
358 |
progress=gr.Progress(track_tqdm=True),
|
359 |
):
|
360 |
-
"""Main enhancement function"""
|
361 |
try:
|
362 |
-
#
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
florence_model.to("cuda")
|
367 |
-
florence_model.to(torch.float16)
|
368 |
|
369 |
# Handle image input
|
370 |
if image_input is not None:
|
371 |
input_image = image_input
|
372 |
elif image_url:
|
373 |
-
|
|
|
|
|
374 |
else:
|
375 |
-
raise gr.Error("Please provide an image
|
376 |
|
377 |
if randomize_seed:
|
378 |
seed = random.randint(0, MAX_SEED)
|
379 |
|
380 |
-
|
381 |
|
382 |
-
# Process input
|
383 |
-
input_image,
|
384 |
input_image, upscale_factor
|
385 |
)
|
386 |
|
387 |
-
# Generate caption
|
388 |
if use_generated_caption:
|
389 |
-
gr.Info("
|
390 |
-
|
391 |
-
prompt
|
392 |
-
print(f"Generated caption: {prompt}")
|
393 |
else:
|
394 |
-
prompt = custom_prompt
|
|
|
395 |
|
396 |
-
|
|
|
|
|
397 |
|
398 |
-
|
|
|
399 |
|
400 |
-
#
|
401 |
-
|
402 |
-
if torch.cuda.is_available():
|
403 |
-
esrgan_model.to("cuda")
|
404 |
-
control_image = esrgan_upscale(input_image, upscale_factor)
|
405 |
-
if torch.cuda.is_available():
|
406 |
-
esrgan_model.to("cpu")
|
407 |
-
else:
|
408 |
-
w, h = input_image.size
|
409 |
-
control_image = input_image.resize(
|
410 |
-
(w * upscale_factor, h * upscale_factor),
|
411 |
-
resample=Image.LANCZOS
|
412 |
-
)
|
413 |
|
414 |
-
#
|
415 |
-
|
416 |
-
pipe,
|
417 |
-
prompt,
|
418 |
-
control_image,
|
419 |
-
denoising_strength,
|
420 |
-
num_inference_steps,
|
421 |
-
1.0, # guidance_scale fixed to 1.0
|
422 |
-
generator,
|
423 |
-
tile_size=1024,
|
424 |
-
overlap=64
|
425 |
-
)
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
if was_resized:
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
resample=Image.LANCZOS
|
432 |
)
|
433 |
|
434 |
-
#
|
435 |
-
|
436 |
|
437 |
-
#
|
438 |
pipe.to("cpu")
|
439 |
-
florence_model.to("cpu")
|
440 |
torch.cuda.empty_cache()
|
|
|
441 |
|
442 |
-
return [
|
443 |
|
444 |
except Exception as e:
|
445 |
-
# Ensure
|
446 |
pipe.to("cpu")
|
447 |
-
florence_model.to("cpu")
|
448 |
torch.cuda.empty_cache()
|
449 |
-
|
|
|
450 |
|
451 |
|
452 |
-
#
|
453 |
-
with gr.Blocks(css=css
|
454 |
gr.HTML(f"""
|
455 |
<div class="main-header">
|
456 |
<h1>π¨ AI Image Upscaler</h1>
|
457 |
-
<p>
|
458 |
-
<p>
|
459 |
</div>
|
460 |
""")
|
461 |
-
|
462 |
with gr.Row():
|
463 |
with gr.Column(scale=1):
|
464 |
gr.HTML("<h3>π€ Input</h3>")
|
465 |
|
466 |
with gr.Tabs():
|
467 |
-
with gr.TabItem("
|
468 |
input_image = gr.Image(
|
469 |
label="Upload Image",
|
470 |
type="pil",
|
471 |
height=200
|
472 |
)
|
473 |
|
474 |
-
with gr.TabItem("
|
475 |
image_url = gr.Textbox(
|
476 |
label="Image URL",
|
477 |
-
placeholder="https://example.com/image.jpg"
|
478 |
-
value=""
|
479 |
)
|
480 |
|
481 |
-
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
482 |
-
|
483 |
use_generated_caption = gr.Checkbox(
|
484 |
-
label="
|
485 |
-
value=True
|
486 |
-
info="Generate detailed caption automatically"
|
487 |
)
|
488 |
|
489 |
custom_prompt = gr.Textbox(
|
490 |
label="Custom Prompt (optional)",
|
491 |
-
placeholder="
|
492 |
lines=2
|
493 |
)
|
494 |
|
495 |
-
gr.HTML("<h3>βοΈ Upscaling Settings</h3>")
|
496 |
-
|
497 |
upscale_factor = gr.Slider(
|
498 |
label="Upscale Factor",
|
499 |
-
minimum=
|
500 |
maximum=4,
|
501 |
step=1,
|
502 |
-
value=2
|
503 |
-
info="How much to upscale the image"
|
504 |
)
|
505 |
|
506 |
num_inference_steps = gr.Slider(
|
507 |
-
label="
|
508 |
-
minimum=
|
509 |
-
maximum=
|
510 |
step=1,
|
511 |
-
value=
|
512 |
-
info="
|
513 |
)
|
514 |
|
515 |
denoising_strength = gr.Slider(
|
516 |
-
label="
|
517 |
-
minimum=0.
|
518 |
-
maximum=
|
519 |
step=0.05,
|
520 |
value=0.3,
|
521 |
-
info="
|
522 |
)
|
523 |
|
524 |
with gr.Row():
|
525 |
-
randomize_seed = gr.Checkbox(
|
526 |
-
label="Randomize seed",
|
527 |
-
value=True
|
528 |
-
)
|
529 |
seed = gr.Slider(
|
530 |
label="Seed",
|
531 |
minimum=0,
|
532 |
maximum=MAX_SEED,
|
533 |
step=1,
|
534 |
-
value=42
|
535 |
-
interactive=True
|
536 |
)
|
537 |
|
538 |
-
enhance_btn = gr.Button(
|
539 |
-
|
540 |
-
variant="primary",
|
541 |
-
size="lg"
|
542 |
-
)
|
543 |
-
|
544 |
with gr.Column(scale=2):
|
545 |
-
gr.HTML("<h3>π
|
546 |
-
|
547 |
result_slider = ImageSlider(
|
548 |
type="pil",
|
549 |
interactive=False,
|
550 |
-
height=
|
551 |
-
elem_id="result_slider",
|
552 |
label=None
|
553 |
)
|
554 |
-
|
555 |
-
# Event handler
|
556 |
enhance_btn.click(
|
557 |
fn=enhance_image,
|
558 |
inputs=[
|
559 |
-
input_image,
|
560 |
-
|
561 |
-
|
562 |
-
randomize_seed,
|
563 |
-
num_inference_steps,
|
564 |
-
upscale_factor,
|
565 |
-
denoising_strength,
|
566 |
-
use_generated_caption,
|
567 |
-
custom_prompt,
|
568 |
],
|
569 |
outputs=[result_slider]
|
570 |
)
|
571 |
|
572 |
gr.HTML("""
|
573 |
-
<div style="margin-top:
|
574 |
-
<
|
575 |
</div>
|
576 |
""")
|
577 |
|
578 |
if __name__ == "__main__":
|
579 |
-
demo.queue().launch(
|
|
|
|
|
|
|
|
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
15 |
+
import gc
|
16 |
|
17 |
+
# Disable ESRGAN for ZeroGPU (saves memory and complexity)
|
18 |
+
USE_ESRGAN = False
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
css = """
|
21 |
#col-container {
|
|
|
30 |
|
31 |
# Device setup
|
32 |
power_device = "ZeroGPU"
|
33 |
+
device = "cpu" # Start on CPU
|
34 |
|
35 |
# Get HuggingFace token
|
36 |
huggingface_token = os.getenv("HF_TOKEN")
|
|
|
45 |
token=huggingface_token,
|
46 |
)
|
47 |
|
48 |
+
# Load Florence-2 model
|
49 |
print("π₯ Loading Florence-2 model...")
|
50 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
51 |
"microsoft/Florence-2-large",
|
52 |
+
torch_dtype=torch.float32,
|
53 |
trust_remote_code=True,
|
54 |
attn_implementation="eager"
|
55 |
+
).to(device).eval()
|
56 |
+
|
57 |
florence_processor = AutoProcessor.from_pretrained(
|
58 |
"microsoft/Florence-2-large",
|
59 |
trust_remote_code=True
|
60 |
)
|
61 |
|
62 |
+
# Load FLUX pipeline
|
63 |
print("π₯ Loading FLUX Img2Img...")
|
64 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
65 |
model_path,
|
66 |
+
torch_dtype=torch.float32
|
67 |
)
|
68 |
+
|
69 |
+
# Enable memory optimizations
|
70 |
+
pipe.enable_model_cpu_offload()
|
71 |
pipe.enable_vae_tiling()
|
72 |
pipe.enable_vae_slicing()
|
73 |
+
pipe.vae.enable_tiling()
|
74 |
+
pipe.vae.enable_slicing()
|
75 |
|
76 |
print("β
All models loaded successfully!")
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
MAX_SEED = 1000000
|
79 |
+
MAX_PIXEL_BUDGET = 2048 * 2048 # Reduced for ZeroGPU stability
|
80 |
+
|
81 |
+
|
82 |
+
def truncate_caption(caption, max_tokens=70):
|
83 |
+
"""Truncate caption to avoid CLIP token limit"""
|
84 |
+
words = caption.split()
|
85 |
+
truncated = []
|
86 |
+
current_length = 0
|
87 |
+
|
88 |
+
for word in words:
|
89 |
+
# Rough estimate: 1 word β 1.3 tokens
|
90 |
+
if current_length + len(word) * 1.3 > max_tokens:
|
91 |
+
break
|
92 |
+
truncated.append(word)
|
93 |
+
current_length += len(word) * 1.3
|
94 |
+
|
95 |
+
result = ' '.join(truncated)
|
96 |
+
if len(truncated) < len(words):
|
97 |
+
result += "..."
|
98 |
+
return result
|
99 |
|
100 |
|
101 |
def make_multiple_16(n):
|
102 |
+
"""Round to nearest multiple of 16"""
|
103 |
return ((n + 15) // 16) * 16
|
104 |
|
105 |
|
106 |
def generate_caption(image):
|
107 |
+
"""Generate caption using Florence-2"""
|
108 |
try:
|
109 |
+
# Keep on CPU for caption generation
|
|
|
|
|
|
|
110 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
111 |
+
|
112 |
+
# Resize image if too large for captioning
|
113 |
+
if image.width > 1024 or image.height > 1024:
|
114 |
+
image.thumbnail((1024, 1024), Image.LANCZOS)
|
115 |
+
|
116 |
inputs = florence_processor(
|
117 |
+
text=task_prompt,
|
118 |
images=image,
|
119 |
return_tensors="pt"
|
120 |
+
).to(device)
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
generated_ids = florence_model.generate(
|
124 |
+
input_ids=inputs["input_ids"],
|
125 |
+
pixel_values=inputs["pixel_values"],
|
126 |
+
max_new_tokens=256, # Reduced from 1024
|
127 |
+
num_beams=1, # Reduced from 3
|
128 |
+
do_sample=False, # Faster without sampling
|
129 |
+
)
|
|
|
|
|
|
|
|
|
130 |
|
131 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
132 |
parsed_answer = florence_processor.post_process_generation(
|
|
|
136 |
)
|
137 |
|
138 |
caption = parsed_answer[task_prompt]
|
139 |
+
# Truncate to avoid CLIP token limit
|
140 |
+
caption = truncate_caption(caption, max_tokens=70)
|
141 |
return caption
|
142 |
+
|
143 |
except Exception as e:
|
144 |
print(f"Caption generation failed: {e}")
|
145 |
+
return "high quality detailed image"
|
146 |
|
147 |
|
148 |
def process_input(input_image, upscale_factor):
|
149 |
+
"""Process input image with size constraints"""
|
150 |
w, h = input_image.size
|
151 |
w_original, h_original = w, h
|
152 |
|
153 |
was_resized = False
|
154 |
|
155 |
+
# Check pixel budget
|
156 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
157 |
+
gr.Info("Resizing input to fit within processing limits...")
|
158 |
+
|
159 |
+
target_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
160 |
+
scale = (target_pixels / (w * h)) ** 0.5
|
161 |
+
|
|
|
|
|
|
|
162 |
new_w = make_multiple_16(int(w * scale))
|
163 |
new_h = make_multiple_16(int(h * scale))
|
164 |
+
|
165 |
+
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
|
166 |
was_resized = True
|
167 |
|
168 |
+
# Ensure dimensions are multiples of 16
|
169 |
+
w, h = input_image.size
|
170 |
+
new_w = make_multiple_16(w)
|
171 |
+
new_h = make_multiple_16(h)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
if new_w != w or new_h != h:
|
174 |
+
padded = Image.new('RGB', (new_w, new_h))
|
175 |
+
padded.paste(input_image, (0, 0))
|
176 |
+
input_image = padded
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
return input_image, w_original, h_original, was_resized
|
179 |
|
180 |
|
181 |
+
def simple_upscale(image, factor):
|
182 |
+
"""Simple LANCZOS upscaling"""
|
183 |
+
return image.resize(
|
184 |
+
(image.width * factor, image.height * factor),
|
185 |
+
Image.LANCZOS
|
186 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
|
189 |
+
@spaces.GPU(duration=90) # Reduced from 120
|
190 |
def enhance_image(
|
191 |
image_input,
|
192 |
image_url,
|
|
|
199 |
custom_prompt,
|
200 |
progress=gr.Progress(track_tqdm=True),
|
201 |
):
|
202 |
+
"""Main enhancement function optimized for ZeroGPU"""
|
203 |
try:
|
204 |
+
# Clear cache at start
|
205 |
+
torch.cuda.empty_cache()
|
206 |
+
gc.collect()
|
|
|
|
|
|
|
207 |
|
208 |
# Handle image input
|
209 |
if image_input is not None:
|
210 |
input_image = image_input
|
211 |
elif image_url:
|
212 |
+
response = requests.get(image_url, stream=True)
|
213 |
+
response.raise_for_status()
|
214 |
+
input_image = Image.open(response.raw)
|
215 |
else:
|
216 |
+
raise gr.Error("Please provide an image")
|
217 |
|
218 |
if randomize_seed:
|
219 |
seed = random.randint(0, MAX_SEED)
|
220 |
|
221 |
+
original_image = input_image.copy()
|
222 |
|
223 |
+
# Process and validate input
|
224 |
+
input_image, w_orig, h_orig, was_resized = process_input(
|
225 |
input_image, upscale_factor
|
226 |
)
|
227 |
|
228 |
+
# Generate or use caption (keep on CPU)
|
229 |
if use_generated_caption:
|
230 |
+
gr.Info("Generating caption...")
|
231 |
+
prompt = generate_caption(input_image)
|
232 |
+
print(f"Caption: {prompt}")
|
|
|
233 |
else:
|
234 |
+
prompt = custom_prompt.strip() if custom_prompt else "high quality image"
|
235 |
+
prompt = truncate_caption(prompt, max_tokens=70)
|
236 |
|
237 |
+
# Initial upscale with LANCZOS
|
238 |
+
gr.Info("Upscaling image...")
|
239 |
+
upscaled = simple_upscale(input_image, upscale_factor)
|
240 |
|
241 |
+
# Move pipeline to GPU only when needed
|
242 |
+
pipe.to("cuda")
|
243 |
|
244 |
+
# For large images, process in smaller chunks
|
245 |
+
w, h = upscaled.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# Determine if we need tiling based on size
|
248 |
+
need_tiling = (w > 1536 or h > 1536)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
if need_tiling:
|
251 |
+
gr.Info("Processing large image in tiles...")
|
252 |
+
# Process center crop for now (to avoid timeout)
|
253 |
+
crop_size = min(1024, w, h)
|
254 |
+
left = (w - crop_size) // 2
|
255 |
+
top = (h - crop_size) // 2
|
256 |
+
|
257 |
+
cropped = upscaled.crop((left, top, left + crop_size, top + crop_size))
|
258 |
+
|
259 |
+
# Ensure dimensions are multiples of 16
|
260 |
+
crop_w = make_multiple_16(cropped.width)
|
261 |
+
crop_h = make_multiple_16(cropped.height)
|
262 |
+
|
263 |
+
if crop_w != cropped.width or crop_h != cropped.height:
|
264 |
+
padded_crop = Image.new('RGB', (crop_w, crop_h))
|
265 |
+
padded_crop.paste(cropped, (0, 0))
|
266 |
+
cropped = padded_crop
|
267 |
+
|
268 |
+
# Process with FLUX
|
269 |
+
with torch.inference_mode():
|
270 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
271 |
+
|
272 |
+
result_crop = pipe(
|
273 |
+
prompt=prompt,
|
274 |
+
image=cropped,
|
275 |
+
strength=denoising_strength,
|
276 |
+
num_inference_steps=num_inference_steps,
|
277 |
+
guidance_scale=1.0,
|
278 |
+
height=crop_h,
|
279 |
+
width=crop_w,
|
280 |
+
generator=generator,
|
281 |
+
).images[0]
|
282 |
+
|
283 |
+
# Crop back if padded
|
284 |
+
if crop_w != cropped.width or crop_h != cropped.height:
|
285 |
+
result_crop = result_crop.crop((0, 0, cropped.width, cropped.height))
|
286 |
+
|
287 |
+
# Paste enhanced crop back
|
288 |
+
result = upscaled.copy()
|
289 |
+
result.paste(result_crop, (left, top))
|
290 |
+
|
291 |
+
else:
|
292 |
+
# Process entire image if small enough
|
293 |
+
# Ensure dimensions are multiples of 16
|
294 |
+
proc_w = make_multiple_16(w)
|
295 |
+
proc_h = make_multiple_16(h)
|
296 |
+
|
297 |
+
if proc_w != w or proc_h != h:
|
298 |
+
padded = Image.new('RGB', (proc_w, proc_h))
|
299 |
+
padded.paste(upscaled, (0, 0))
|
300 |
+
upscaled = padded
|
301 |
+
|
302 |
+
with torch.inference_mode():
|
303 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
304 |
+
|
305 |
+
result = pipe(
|
306 |
+
prompt=prompt,
|
307 |
+
image=upscaled,
|
308 |
+
strength=denoising_strength,
|
309 |
+
num_inference_steps=num_inference_steps,
|
310 |
+
guidance_scale=1.0,
|
311 |
+
height=proc_h,
|
312 |
+
width=proc_w,
|
313 |
+
generator=generator,
|
314 |
+
).images[0]
|
315 |
+
|
316 |
+
# Crop back if padded
|
317 |
+
if proc_w != w or proc_h != h:
|
318 |
+
result = result.crop((0, 0, w, h))
|
319 |
+
|
320 |
+
# Final resize if needed
|
321 |
if was_resized:
|
322 |
+
result = result.resize(
|
323 |
+
(w_orig * upscale_factor, h_orig * upscale_factor),
|
324 |
+
Image.LANCZOS
|
|
|
325 |
)
|
326 |
|
327 |
+
# Prepare for slider
|
328 |
+
input_resized = original_image.resize(result.size, Image.LANCZOS)
|
329 |
|
330 |
+
# Clean up
|
331 |
pipe.to("cpu")
|
|
|
332 |
torch.cuda.empty_cache()
|
333 |
+
gc.collect()
|
334 |
|
335 |
+
return [input_resized, result]
|
336 |
|
337 |
except Exception as e:
|
338 |
+
# Ensure cleanup on error
|
339 |
pipe.to("cpu")
|
|
|
340 |
torch.cuda.empty_cache()
|
341 |
+
gc.collect()
|
342 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
343 |
|
344 |
|
345 |
+
# Gradio Interface
|
346 |
+
with gr.Blocks(css=css) as demo:
|
347 |
gr.HTML(f"""
|
348 |
<div class="main-header">
|
349 |
<h1>π¨ AI Image Upscaler</h1>
|
350 |
+
<p>Upscale images using Florence-2 + FLUX (Optimized for ZeroGPU)</p>
|
351 |
+
<p>Running on <strong>{power_device}</strong></p>
|
352 |
</div>
|
353 |
""")
|
354 |
+
|
355 |
with gr.Row():
|
356 |
with gr.Column(scale=1):
|
357 |
gr.HTML("<h3>π€ Input</h3>")
|
358 |
|
359 |
with gr.Tabs():
|
360 |
+
with gr.TabItem("Upload"):
|
361 |
input_image = gr.Image(
|
362 |
label="Upload Image",
|
363 |
type="pil",
|
364 |
height=200
|
365 |
)
|
366 |
|
367 |
+
with gr.TabItem("URL"):
|
368 |
image_url = gr.Textbox(
|
369 |
label="Image URL",
|
370 |
+
placeholder="https://example.com/image.jpg"
|
|
|
371 |
)
|
372 |
|
|
|
|
|
373 |
use_generated_caption = gr.Checkbox(
|
374 |
+
label="Auto-generate caption",
|
375 |
+
value=True
|
|
|
376 |
)
|
377 |
|
378 |
custom_prompt = gr.Textbox(
|
379 |
label="Custom Prompt (optional)",
|
380 |
+
placeholder="Override auto-caption if desired",
|
381 |
lines=2
|
382 |
)
|
383 |
|
|
|
|
|
384 |
upscale_factor = gr.Slider(
|
385 |
label="Upscale Factor",
|
386 |
+
minimum=2,
|
387 |
maximum=4,
|
388 |
step=1,
|
389 |
+
value=2
|
|
|
390 |
)
|
391 |
|
392 |
num_inference_steps = gr.Slider(
|
393 |
+
label="Quality (Steps)",
|
394 |
+
minimum=15,
|
395 |
+
maximum=30,
|
396 |
step=1,
|
397 |
+
value=20,
|
398 |
+
info="Higher = better but slower"
|
399 |
)
|
400 |
|
401 |
denoising_strength = gr.Slider(
|
402 |
+
label="Enhancement Strength",
|
403 |
+
minimum=0.1,
|
404 |
+
maximum=0.5,
|
405 |
step=0.05,
|
406 |
value=0.3,
|
407 |
+
info="Higher = more changes"
|
408 |
)
|
409 |
|
410 |
with gr.Row():
|
411 |
+
randomize_seed = gr.Checkbox(label="Random seed", value=True)
|
|
|
|
|
|
|
412 |
seed = gr.Slider(
|
413 |
label="Seed",
|
414 |
minimum=0,
|
415 |
maximum=MAX_SEED,
|
416 |
step=1,
|
417 |
+
value=42
|
|
|
418 |
)
|
419 |
|
420 |
+
enhance_btn = gr.Button("π Upscale", variant="primary", size="lg")
|
421 |
+
|
|
|
|
|
|
|
|
|
422 |
with gr.Column(scale=2):
|
423 |
+
gr.HTML("<h3>π Result</h3>")
|
|
|
424 |
result_slider = ImageSlider(
|
425 |
type="pil",
|
426 |
interactive=False,
|
427 |
+
height=500,
|
|
|
428 |
label=None
|
429 |
)
|
430 |
+
|
|
|
431 |
enhance_btn.click(
|
432 |
fn=enhance_image,
|
433 |
inputs=[
|
434 |
+
input_image, image_url, seed, randomize_seed,
|
435 |
+
num_inference_steps, upscale_factor, denoising_strength,
|
436 |
+
use_generated_caption, custom_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
],
|
438 |
outputs=[result_slider]
|
439 |
)
|
440 |
|
441 |
gr.HTML("""
|
442 |
+
<div style="margin-top: 1rem; padding: 0.5rem; background: #f0f0f0; border-radius: 8px;">
|
443 |
+
<small>β‘ Optimized for ZeroGPU: Max 2048x2048 output, simplified processing for stability</small>
|
444 |
</div>
|
445 |
""")
|
446 |
|
447 |
if __name__ == "__main__":
|
448 |
+
demo.queue(max_size=3).launch(
|
449 |
+
share=False, # Don't use share on Spaces
|
450 |
+
server_name="0.0.0.0",
|
451 |
+
server_port=7860
|
452 |
+
)
|