Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from PIL import Image
|
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
15 |
|
16 |
-
# For ESRGAN (
|
17 |
try:
|
18 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
19 |
from basicsr.utils import img2tensor, tensor2img
|
@@ -33,9 +33,9 @@ css = """
|
|
33 |
}
|
34 |
"""
|
35 |
|
36 |
-
# Device setup
|
37 |
power_device = "ZeroGPU"
|
38 |
-
device = "cpu"
|
39 |
|
40 |
# Get HuggingFace token
|
41 |
huggingface_token = os.getenv("HF_TOKEN")
|
@@ -54,7 +54,7 @@ model_path = snapshot_download(
|
|
54 |
print("π₯ Loading Florence-2 model...")
|
55 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
56 |
"microsoft/Florence-2-large",
|
57 |
-
torch_dtype=torch.
|
58 |
trust_remote_code=True,
|
59 |
attn_implementation="eager"
|
60 |
).to(device)
|
@@ -67,7 +67,7 @@ florence_processor = AutoProcessor.from_pretrained(
|
|
67 |
print("π₯ Loading FLUX Img2Img...")
|
68 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
69 |
model_path,
|
70 |
-
torch_dtype=torch.
|
71 |
)
|
72 |
pipe.enable_vae_tiling()
|
73 |
pipe.enable_vae_slicing()
|
@@ -76,27 +76,51 @@ print("β
All models loaded successfully!")
|
|
76 |
|
77 |
# Download ESRGAN model if using
|
78 |
if USE_ESRGAN:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
MAX_SEED = 1000000
|
90 |
-
MAX_PIXEL_BUDGET = 8192 * 8192
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
def generate_caption(image):
|
94 |
"""Generate detailed caption using Florence-2"""
|
95 |
try:
|
|
|
|
|
|
|
|
|
96 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
97 |
prompt = task_prompt
|
98 |
|
99 |
-
inputs = florence_processor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
generated_ids = florence_model.generate(
|
102 |
input_ids=inputs["input_ids"],
|
@@ -107,7 +131,11 @@ def generate_caption(image):
|
|
107 |
)
|
108 |
|
109 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
110 |
-
parsed_answer = florence_processor.post_process_generation(
|
|
|
|
|
|
|
|
|
111 |
|
112 |
caption = parsed_answer[task_prompt]
|
113 |
return caption
|
@@ -120,10 +148,9 @@ def process_input(input_image, upscale_factor):
|
|
120 |
"""Process input image and handle size constraints"""
|
121 |
w, h = input_image.size
|
122 |
w_original, h_original = w, h
|
123 |
-
|
124 |
-
|
125 |
was_resized = False
|
126 |
-
|
127 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
128 |
warnings.warn(
|
129 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
@@ -133,11 +160,11 @@ def process_input(input_image, upscale_factor):
|
|
133 |
)
|
134 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
135 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
136 |
-
new_w =
|
137 |
-
new_h =
|
138 |
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
139 |
was_resized = True
|
140 |
-
|
141 |
return input_image, w_original, h_original, was_resized
|
142 |
|
143 |
|
@@ -152,61 +179,168 @@ def load_image_from_url(url):
|
|
152 |
|
153 |
|
154 |
def esrgan_upscale(image, scale=4):
|
|
|
155 |
if not USE_ESRGAN:
|
156 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
|
164 |
-
def
|
165 |
-
"""
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
tile_w = min(tile_size, w - x)
|
172 |
tile_h = min(tile_size, h - y)
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
gen_tile = pipe(
|
177 |
prompt=prompt,
|
178 |
image=tile,
|
179 |
strength=strength,
|
180 |
num_inference_steps=steps,
|
181 |
guidance_scale=guidance,
|
182 |
-
height=
|
183 |
-
width=
|
184 |
generator=generator,
|
185 |
).images[0]
|
186 |
-
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
mask.putpixel((i, j), int(255 * (j / overlap)))
|
204 |
-
output.paste(gen_tile, paste_box, mask)
|
205 |
-
else:
|
206 |
-
output.paste(gen_tile, paste_box)
|
207 |
else:
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
return output
|
211 |
|
212 |
|
@@ -224,85 +358,106 @@ def enhance_image(
|
|
224 |
progress=gr.Progress(track_tqdm=True),
|
225 |
):
|
226 |
"""Main enhancement function"""
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
input_image
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
|
297 |
# Create Gradio interface
|
298 |
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as demo:
|
299 |
-
gr.HTML("""
|
300 |
<div class="main-header">
|
301 |
<h1>π¨ AI Image Upscaler</h1>
|
302 |
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
303 |
-
<p>Currently running on <strong>{}</strong></p>
|
304 |
</div>
|
305 |
-
"""
|
306 |
|
307 |
with gr.Row():
|
308 |
with gr.Column(scale=1):
|
@@ -313,14 +468,14 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
313 |
input_image = gr.Image(
|
314 |
label="Upload Image",
|
315 |
type="pil",
|
316 |
-
height=200
|
317 |
)
|
318 |
|
319 |
with gr.TabItem("π Image URL"):
|
320 |
image_url = gr.Textbox(
|
321 |
label="Image URL",
|
322 |
placeholder="https://example.com/image.jpg",
|
323 |
-
value="
|
324 |
)
|
325 |
|
326 |
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
@@ -386,15 +541,15 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
386 |
size="lg"
|
387 |
)
|
388 |
|
389 |
-
with gr.Column(scale=2):
|
390 |
gr.HTML("<h3>π Results</h3>")
|
391 |
|
392 |
result_slider = ImageSlider(
|
393 |
type="pil",
|
394 |
-
interactive=False,
|
395 |
-
height=600,
|
396 |
elem_id="result_slider",
|
397 |
-
label=None
|
398 |
)
|
399 |
|
400 |
# Event handler
|
@@ -419,73 +574,6 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
419 |
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
420 |
</div>
|
421 |
""")
|
422 |
-
|
423 |
-
# Custom CSS for slider
|
424 |
-
gr.HTML("""
|
425 |
-
<style>
|
426 |
-
#result_slider .slider {
|
427 |
-
width: 100% !important;
|
428 |
-
max-width: inherit !important;
|
429 |
-
}
|
430 |
-
#result_slider img {
|
431 |
-
object-fit: contain !important;
|
432 |
-
width: 100% !important;
|
433 |
-
height: auto !important;
|
434 |
-
}
|
435 |
-
#result_slider .gr-button-tool {
|
436 |
-
display: none !important;
|
437 |
-
}
|
438 |
-
#result_slider .gr-button-undo {
|
439 |
-
display: none !important;
|
440 |
-
}
|
441 |
-
#result_slider .gr-button-clear {
|
442 |
-
display: none !important;
|
443 |
-
}
|
444 |
-
#result_slider .badge-container .badge {
|
445 |
-
display: none !important;
|
446 |
-
}
|
447 |
-
#result_slider .badge-container::before {
|
448 |
-
content: "Before";
|
449 |
-
position: absolute;
|
450 |
-
top: 10px;
|
451 |
-
left: 10px;
|
452 |
-
background: rgba(0,0,0,0.5);
|
453 |
-
color: white;
|
454 |
-
padding: 5px;
|
455 |
-
border-radius: 5px;
|
456 |
-
z-index: 10;
|
457 |
-
}
|
458 |
-
#result_slider .badge-container::after {
|
459 |
-
content: "After";
|
460 |
-
position: absolute;
|
461 |
-
top: 10px;
|
462 |
-
right: 10px;
|
463 |
-
background: rgba(0,0,0,0.5);
|
464 |
-
color: white;
|
465 |
-
padding: 5px;
|
466 |
-
border-radius: 5px;
|
467 |
-
z-index: 10;
|
468 |
-
}
|
469 |
-
#result_slider .fullscreen img {
|
470 |
-
object-fit: contain !important;
|
471 |
-
width: 100vw !important;
|
472 |
-
height: 100vh !important;
|
473 |
-
}
|
474 |
-
</style>
|
475 |
-
""")
|
476 |
-
|
477 |
-
# JS to set slider default position to middle
|
478 |
-
gr.HTML("""
|
479 |
-
<script>
|
480 |
-
document.addEventListener('DOMContentLoaded', function() {
|
481 |
-
const sliderInput = document.querySelector('#result_slider input[type="range"]');
|
482 |
-
if (sliderInput) {
|
483 |
-
sliderInput.value = 50;
|
484 |
-
sliderInput.dispatchEvent(new Event('input'));
|
485 |
-
}
|
486 |
-
});
|
487 |
-
</script>
|
488 |
-
""")
|
489 |
|
490 |
if __name__ == "__main__":
|
491 |
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
13 |
from huggingface_hub import snapshot_download
|
14 |
import requests
|
15 |
|
16 |
+
# For ESRGAN (optional - will work without it)
|
17 |
try:
|
18 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
19 |
from basicsr.utils import img2tensor, tensor2img
|
|
|
33 |
}
|
34 |
"""
|
35 |
|
36 |
+
# Device setup
|
37 |
power_device = "ZeroGPU"
|
38 |
+
device = "cpu" # Start on CPU, will move to GPU when needed
|
39 |
|
40 |
# Get HuggingFace token
|
41 |
huggingface_token = os.getenv("HF_TOKEN")
|
|
|
54 |
print("π₯ Loading Florence-2 model...")
|
55 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
56 |
"microsoft/Florence-2-large",
|
57 |
+
torch_dtype=torch.float32, # Use float32 on CPU to avoid dtype issues
|
58 |
trust_remote_code=True,
|
59 |
attn_implementation="eager"
|
60 |
).to(device)
|
|
|
67 |
print("π₯ Loading FLUX Img2Img...")
|
68 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
69 |
model_path,
|
70 |
+
torch_dtype=torch.float32 # Start with float32 on CPU
|
71 |
)
|
72 |
pipe.enable_vae_tiling()
|
73 |
pipe.enable_vae_slicing()
|
|
|
76 |
|
77 |
# Download ESRGAN model if using
|
78 |
if USE_ESRGAN:
|
79 |
+
try:
|
80 |
+
esrgan_path = "4x-UltraSharp.pth"
|
81 |
+
if not os.path.exists(esrgan_path):
|
82 |
+
url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
|
83 |
+
print("π₯ Downloading ESRGAN model...")
|
84 |
+
with open(esrgan_path, "wb") as f:
|
85 |
+
f.write(requests.get(url).content)
|
86 |
+
esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
87 |
+
state_dict = torch.load(esrgan_path, map_location='cpu')['params_ema']
|
88 |
+
esrgan_model.load_state_dict(state_dict)
|
89 |
+
esrgan_model.eval()
|
90 |
+
print("β
ESRGAN model loaded!")
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Failed to load ESRGAN: {e}")
|
93 |
+
USE_ESRGAN = False
|
94 |
|
95 |
MAX_SEED = 1000000
|
96 |
+
MAX_PIXEL_BUDGET = 8192 * 8192
|
97 |
+
|
98 |
+
|
99 |
+
def make_multiple_16(n):
|
100 |
+
"""Round up to nearest multiple of 16"""
|
101 |
+
return ((n + 15) // 16) * 16
|
102 |
|
103 |
|
104 |
def generate_caption(image):
|
105 |
"""Generate detailed caption using Florence-2"""
|
106 |
try:
|
107 |
+
# Ensure model is on the correct device with correct dtype
|
108 |
+
if florence_model.device.type == "cuda":
|
109 |
+
florence_model.to(torch.float16)
|
110 |
+
|
111 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
112 |
prompt = task_prompt
|
113 |
|
114 |
+
inputs = florence_processor(
|
115 |
+
text=prompt,
|
116 |
+
images=image,
|
117 |
+
return_tensors="pt"
|
118 |
+
).to(florence_model.device)
|
119 |
+
|
120 |
+
# Ensure dtype consistency
|
121 |
+
if florence_model.device.type == "cuda":
|
122 |
+
if hasattr(inputs, "pixel_values"):
|
123 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
|
124 |
|
125 |
generated_ids = florence_model.generate(
|
126 |
input_ids=inputs["input_ids"],
|
|
|
131 |
)
|
132 |
|
133 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
134 |
+
parsed_answer = florence_processor.post_process_generation(
|
135 |
+
generated_text,
|
136 |
+
task=task_prompt,
|
137 |
+
image_size=(image.width, image.height)
|
138 |
+
)
|
139 |
|
140 |
caption = parsed_answer[task_prompt]
|
141 |
return caption
|
|
|
148 |
"""Process input image and handle size constraints"""
|
149 |
w, h = input_image.size
|
150 |
w_original, h_original = w, h
|
151 |
+
|
|
|
152 |
was_resized = False
|
153 |
+
|
154 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
155 |
warnings.warn(
|
156 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
|
|
160 |
)
|
161 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
162 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
163 |
+
new_w = make_multiple_16(int(w * scale))
|
164 |
+
new_h = make_multiple_16(int(h * scale))
|
165 |
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
166 |
was_resized = True
|
167 |
+
|
168 |
return input_image, w_original, h_original, was_resized
|
169 |
|
170 |
|
|
|
179 |
|
180 |
|
181 |
def esrgan_upscale(image, scale=4):
|
182 |
+
"""Upscale image using ESRGAN or fallback to LANCZOS"""
|
183 |
if not USE_ESRGAN:
|
184 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
185 |
+
|
186 |
+
try:
|
187 |
+
img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
|
188 |
+
with torch.no_grad():
|
189 |
+
# Move model to same device as image tensor
|
190 |
+
if torch.cuda.is_available():
|
191 |
+
esrgan_model.to("cuda")
|
192 |
+
img = img.to("cuda")
|
193 |
+
output = esrgan_model(img.unsqueeze(0)).squeeze()
|
194 |
+
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
195 |
+
return Image.fromarray(output_img)
|
196 |
+
except Exception as e:
|
197 |
+
print(f"ESRGAN upscale failed: {e}, falling back to LANCZOS")
|
198 |
+
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
199 |
|
200 |
|
201 |
+
def create_blend_mask(width, height, overlap, edge_x, edge_y):
|
202 |
+
"""Create a gradient blend mask for smooth tile transitions"""
|
203 |
+
mask = Image.new('L', (width, height), 255)
|
204 |
+
pixels = mask.load()
|
205 |
+
|
206 |
+
# Horizontal blend (left edge)
|
207 |
+
if edge_x and overlap > 0:
|
208 |
+
for x in range(min(overlap, width)):
|
209 |
+
alpha = x / overlap
|
210 |
+
for y in range(height):
|
211 |
+
pixels[x, y] = int(255 * alpha)
|
212 |
+
|
213 |
+
# Vertical blend (top edge)
|
214 |
+
if edge_y and overlap > 0:
|
215 |
+
for y in range(min(overlap, height)):
|
216 |
+
alpha = y / overlap
|
217 |
+
for x in range(width):
|
218 |
+
# Combine with existing alpha if both edges
|
219 |
+
existing = pixels[x, y] / 255.0
|
220 |
+
combined = min(existing, alpha)
|
221 |
+
pixels[x, y] = int(255 * combined)
|
222 |
+
|
223 |
+
return mask
|
224 |
+
|
225 |
|
226 |
+
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=64):
|
227 |
+
"""Tiled Img2Img to handle large images"""
|
228 |
+
w, h = image.size
|
229 |
+
|
230 |
+
# Ensure tile_size is divisible by 16
|
231 |
+
tile_size = make_multiple_16(tile_size)
|
232 |
+
overlap = make_multiple_16(overlap)
|
233 |
+
|
234 |
+
# If image is small enough, process without tiling
|
235 |
+
if w <= tile_size and h <= tile_size:
|
236 |
+
# Ensure dimensions are divisible by 16
|
237 |
+
new_w = make_multiple_16(w)
|
238 |
+
new_h = make_multiple_16(h)
|
239 |
+
|
240 |
+
if new_w != w or new_h != h:
|
241 |
+
padded_image = Image.new('RGB', (new_w, new_h))
|
242 |
+
padded_image.paste(image, (0, 0))
|
243 |
+
else:
|
244 |
+
padded_image = image
|
245 |
+
|
246 |
+
result = pipe(
|
247 |
+
prompt=prompt,
|
248 |
+
image=padded_image,
|
249 |
+
strength=strength,
|
250 |
+
num_inference_steps=steps,
|
251 |
+
guidance_scale=guidance,
|
252 |
+
height=new_h,
|
253 |
+
width=new_w,
|
254 |
+
generator=generator,
|
255 |
+
).images[0]
|
256 |
+
|
257 |
+
# Crop back to original size if padded
|
258 |
+
if new_w != w or new_h != h:
|
259 |
+
result = result.crop((0, 0, w, h))
|
260 |
+
|
261 |
+
return result
|
262 |
+
|
263 |
+
# Process with tiling for large images
|
264 |
+
output = Image.new('RGB', (w, h))
|
265 |
+
|
266 |
+
# Calculate tile positions
|
267 |
+
tiles = []
|
268 |
+
for y in range(0, h, tile_size - overlap):
|
269 |
+
for x in range(0, w, tile_size - overlap):
|
270 |
tile_w = min(tile_size, w - x)
|
271 |
tile_h = min(tile_size, h - y)
|
272 |
+
|
273 |
+
# Ensure tile dimensions are divisible by 16
|
274 |
+
tile_w_padded = make_multiple_16(tile_w)
|
275 |
+
tile_h_padded = make_multiple_16(tile_h)
|
276 |
+
|
277 |
+
tiles.append({
|
278 |
+
'x': x,
|
279 |
+
'y': y,
|
280 |
+
'w': tile_w,
|
281 |
+
'h': tile_h,
|
282 |
+
'w_padded': tile_w_padded,
|
283 |
+
'h_padded': tile_h_padded,
|
284 |
+
'edge_x': x > 0,
|
285 |
+
'edge_y': y > 0
|
286 |
+
})
|
287 |
+
|
288 |
+
# Process each tile
|
289 |
+
for i, tile_info in enumerate(tiles):
|
290 |
+
print(f"Processing tile {i+1}/{len(tiles)}...")
|
291 |
+
|
292 |
+
# Extract tile from image
|
293 |
+
tile = image.crop((
|
294 |
+
tile_info['x'],
|
295 |
+
tile_info['y'],
|
296 |
+
tile_info['x'] + tile_info['w'],
|
297 |
+
tile_info['y'] + tile_info['h']
|
298 |
+
))
|
299 |
+
|
300 |
+
# Pad if necessary
|
301 |
+
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
302 |
+
padded_tile = Image.new('RGB', (tile_info['w_padded'], tile_info['h_padded']))
|
303 |
+
padded_tile.paste(tile, (0, 0))
|
304 |
+
tile = padded_tile
|
305 |
+
|
306 |
+
# Process tile with FLUX
|
307 |
+
try:
|
308 |
gen_tile = pipe(
|
309 |
prompt=prompt,
|
310 |
image=tile,
|
311 |
strength=strength,
|
312 |
num_inference_steps=steps,
|
313 |
guidance_scale=guidance,
|
314 |
+
height=tile_info['h_padded'],
|
315 |
+
width=tile_info['w_padded'],
|
316 |
generator=generator,
|
317 |
).images[0]
|
318 |
+
|
319 |
+
# Crop back to original tile size if padded
|
320 |
+
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
321 |
+
gen_tile = gen_tile.crop((0, 0, tile_info['w'], tile_info['h']))
|
322 |
+
|
323 |
+
# Create blend mask if needed
|
324 |
+
if overlap > 0 and (tile_info['edge_x'] or tile_info['edge_y']):
|
325 |
+
mask = create_blend_mask(
|
326 |
+
tile_info['w'],
|
327 |
+
tile_info['h'],
|
328 |
+
overlap,
|
329 |
+
tile_info['edge_x'],
|
330 |
+
tile_info['edge_y']
|
331 |
+
)
|
332 |
+
|
333 |
+
# Composite with blending
|
334 |
+
output.paste(gen_tile, (tile_info['x'], tile_info['y']), mask)
|
|
|
|
|
|
|
|
|
335 |
else:
|
336 |
+
# Direct paste for first tile or no overlap
|
337 |
+
output.paste(gen_tile, (tile_info['x'], tile_info['y']))
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
print(f"Error processing tile: {e}")
|
341 |
+
# Fallback: paste original tile
|
342 |
+
output.paste(tile, (tile_info['x'], tile_info['y']))
|
343 |
+
|
344 |
return output
|
345 |
|
346 |
|
|
|
358 |
progress=gr.Progress(track_tqdm=True),
|
359 |
):
|
360 |
"""Main enhancement function"""
|
361 |
+
try:
|
362 |
+
# Move models to GPU and convert to appropriate dtype
|
363 |
+
pipe.to("cuda")
|
364 |
+
pipe.to(torch.bfloat16)
|
365 |
+
|
366 |
+
florence_model.to("cuda")
|
367 |
+
florence_model.to(torch.float16)
|
368 |
+
|
369 |
+
# Handle image input
|
370 |
+
if image_input is not None:
|
371 |
+
input_image = image_input
|
372 |
+
elif image_url:
|
373 |
+
input_image = load_image_from_url(image_url)
|
374 |
+
else:
|
375 |
+
raise gr.Error("Please provide an image (upload or URL)")
|
376 |
+
|
377 |
+
if randomize_seed:
|
378 |
+
seed = random.randint(0, MAX_SEED)
|
379 |
+
|
380 |
+
true_input_image = input_image
|
381 |
+
|
382 |
+
# Process input image
|
383 |
+
input_image, w_original, h_original, was_resized = process_input(
|
384 |
+
input_image, upscale_factor
|
385 |
+
)
|
386 |
+
|
387 |
+
# Generate caption if requested
|
388 |
+
if use_generated_caption:
|
389 |
+
gr.Info("π Generating image caption...")
|
390 |
+
generated_caption = generate_caption(input_image)
|
391 |
+
prompt = generated_caption
|
392 |
+
print(f"Generated caption: {prompt}")
|
393 |
+
else:
|
394 |
+
prompt = custom_prompt if custom_prompt.strip() else ""
|
395 |
+
|
396 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
397 |
+
|
398 |
+
gr.Info("π Upscaling image...")
|
399 |
+
|
400 |
+
# Initial upscale
|
401 |
+
if USE_ESRGAN and upscale_factor == 4:
|
402 |
+
if torch.cuda.is_available():
|
403 |
+
esrgan_model.to("cuda")
|
404 |
+
control_image = esrgan_upscale(input_image, upscale_factor)
|
405 |
+
if torch.cuda.is_available():
|
406 |
+
esrgan_model.to("cpu")
|
407 |
+
else:
|
408 |
+
w, h = input_image.size
|
409 |
+
control_image = input_image.resize(
|
410 |
+
(w * upscale_factor, h * upscale_factor),
|
411 |
+
resample=Image.LANCZOS
|
412 |
+
)
|
413 |
+
|
414 |
+
# Tiled Flux Img2Img for refinement
|
415 |
+
image = tiled_flux_img2img(
|
416 |
+
pipe,
|
417 |
+
prompt,
|
418 |
+
control_image,
|
419 |
+
denoising_strength,
|
420 |
+
num_inference_steps,
|
421 |
+
1.0, # guidance_scale fixed to 1.0
|
422 |
+
generator,
|
423 |
+
tile_size=1024,
|
424 |
+
overlap=64
|
425 |
+
)
|
426 |
+
|
427 |
+
if was_resized:
|
428 |
+
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
|
429 |
+
image = image.resize(
|
430 |
+
(w_original * upscale_factor, h_original * upscale_factor),
|
431 |
+
resample=Image.LANCZOS
|
432 |
+
)
|
433 |
+
|
434 |
+
# Resize input image to match output size for slider alignment
|
435 |
+
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
|
436 |
+
|
437 |
+
# Move models back to CPU to release GPU
|
438 |
+
pipe.to("cpu")
|
439 |
+
florence_model.to("cpu")
|
440 |
+
torch.cuda.empty_cache()
|
441 |
+
|
442 |
+
return [resized_input, image]
|
443 |
+
|
444 |
+
except Exception as e:
|
445 |
+
# Ensure models are moved back to CPU even on error
|
446 |
+
pipe.to("cpu")
|
447 |
+
florence_model.to("cpu")
|
448 |
+
torch.cuda.empty_cache()
|
449 |
+
raise gr.Error(f"Enhancement failed: {str(e)}")
|
450 |
|
451 |
|
452 |
# Create Gradio interface
|
453 |
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as demo:
|
454 |
+
gr.HTML(f"""
|
455 |
<div class="main-header">
|
456 |
<h1>π¨ AI Image Upscaler</h1>
|
457 |
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
458 |
+
<p>Currently running on <strong>{power_device}</strong></p>
|
459 |
</div>
|
460 |
+
""")
|
461 |
|
462 |
with gr.Row():
|
463 |
with gr.Column(scale=1):
|
|
|
468 |
input_image = gr.Image(
|
469 |
label="Upload Image",
|
470 |
type="pil",
|
471 |
+
height=200
|
472 |
)
|
473 |
|
474 |
with gr.TabItem("π Image URL"):
|
475 |
image_url = gr.Textbox(
|
476 |
label="Image URL",
|
477 |
placeholder="https://example.com/image.jpg",
|
478 |
+
value=""
|
479 |
)
|
480 |
|
481 |
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
|
|
541 |
size="lg"
|
542 |
)
|
543 |
|
544 |
+
with gr.Column(scale=2):
|
545 |
gr.HTML("<h3>π Results</h3>")
|
546 |
|
547 |
result_slider = ImageSlider(
|
548 |
type="pil",
|
549 |
+
interactive=False,
|
550 |
+
height=600,
|
551 |
elem_id="result_slider",
|
552 |
+
label=None
|
553 |
)
|
554 |
|
555 |
# Event handler
|
|
|
574 |
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
575 |
</div>
|
576 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
if __name__ == "__main__":
|
579 |
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|