Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,431 +1,393 @@
|
|
1 |
-
import
|
2 |
import random
|
3 |
-
import
|
4 |
-
|
5 |
-
import torch
|
6 |
import gradio as gr
|
7 |
-
|
8 |
import spaces
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
try:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
asyncio.set_event_loop(loop)
|
95 |
-
|
96 |
-
server_instance = server.PromptServer(loop)
|
97 |
-
execution.PromptQueue(server_instance)
|
98 |
-
init_extra_nodes()
|
99 |
except Exception as e:
|
100 |
-
print(f"
|
101 |
-
|
102 |
-
|
103 |
-
from nodes import NODE_CLASS_MAPPINGS
|
104 |
-
|
105 |
-
# Pre-load models outside the decorated function for ZeroGPU efficiency
|
106 |
-
try:
|
107 |
-
import_custom_nodes()
|
108 |
-
|
109 |
-
# Initialize model loaders
|
110 |
-
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
111 |
-
dualcliploader_54 = dualcliploader.load_clip(
|
112 |
-
clip_name1="clip_l.safetensors",
|
113 |
-
clip_name2="t5xxl_fp16.safetensors",
|
114 |
-
type="flux",
|
115 |
-
device="default",
|
116 |
-
)
|
117 |
|
118 |
-
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
|
119 |
-
upscalemodelloader_44 = upscalemodelloader.load_model(model_name="4x-UltraSharp.pth")
|
120 |
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
unetloader_58 = unetloader.load_unet(
|
126 |
-
unet_name="flux1-dev.safetensors", weight_dtype="default"
|
127 |
-
)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
try:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
getattr(loader[0], 'patcher', loader[0])
|
140 |
-
for loader in model_loaders
|
141 |
-
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
142 |
-
]
|
143 |
-
model_management.load_models_gpu(valid_models)
|
144 |
-
print("Models successfully pre-loaded to GPU")
|
145 |
except Exception as e:
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
@spaces.GPU(duration=120) # Adjust duration based on your workflow speed
|
156 |
-
def enhance_image(image_input, upscale_factor, steps, cfg_scale, denoise_strength, guidance_scale):
|
157 |
-
"""
|
158 |
-
Main function to enhance and upscale images using Florence-2 captioning and FLUX upscaling
|
159 |
-
"""
|
160 |
-
try:
|
161 |
-
with torch.inference_mode():
|
162 |
-
# Handle different input types (file upload vs URL)
|
163 |
-
if isinstance(image_input, str) and image_input.startswith(('http://', 'https://')):
|
164 |
-
# Load from URL
|
165 |
-
load_image_from_url_mtb = NODE_CLASS_MAPPINGS["Load Image From Url (mtb)"]()
|
166 |
-
load_image_result = load_image_from_url_mtb.load(url=image_input)
|
167 |
-
else:
|
168 |
-
# Load from uploaded file
|
169 |
-
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
170 |
-
load_image_result = loadimage.load_image(image=image_input)
|
171 |
-
|
172 |
-
# Generate detailed caption using Florence-2
|
173 |
-
florence2run = NODE_CLASS_MAPPINGS["Florence2Run"]()
|
174 |
-
florence2run_51 = florence2run.encode(
|
175 |
-
text_input="",
|
176 |
-
task="more_detailed_caption",
|
177 |
-
fill_mask=True,
|
178 |
-
keep_model_loaded=False,
|
179 |
-
max_new_tokens=1024,
|
180 |
-
num_beams=3,
|
181 |
-
do_sample=True,
|
182 |
-
output_mask_select="",
|
183 |
-
seed=random.randint(1, 2**64),
|
184 |
-
image=get_value_at_index(load_image_result, 0),
|
185 |
-
florence2_model=get_value_at_index(downloadandloadflorence2model_52, 0),
|
186 |
-
)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
)
|
199 |
|
200 |
-
|
201 |
-
primitivefloat = NODE_CLASS_MAPPINGS["PrimitiveFloat"]()
|
202 |
-
primitivefloat_60 = primitivefloat.execute(value=upscale_factor)
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
)
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
seed=random.randint(1, 2**64),
|
216 |
-
steps=steps,
|
217 |
-
cfg=cfg_scale,
|
218 |
-
sampler_name="euler",
|
219 |
-
scheduler="normal",
|
220 |
-
denoise=denoise_strength,
|
221 |
-
mode_type="Linear",
|
222 |
-
tile_width=1024,
|
223 |
-
tile_height=1024,
|
224 |
-
mask_blur=8,
|
225 |
-
tile_padding=32,
|
226 |
-
seam_fix_mode="None",
|
227 |
-
seam_fix_denoise=1,
|
228 |
-
seam_fix_width=64,
|
229 |
-
seam_fix_mask_blur=8,
|
230 |
-
seam_fix_padding=16,
|
231 |
-
force_uniform_tiles=True,
|
232 |
-
tiled_decode=False,
|
233 |
-
image=get_value_at_index(load_image_result, 0),
|
234 |
-
model=get_value_at_index(unetloader_58, 0),
|
235 |
-
positive=get_value_at_index(fluxguidance_26, 0),
|
236 |
-
negative=get_value_at_index(cliptextencode_42, 0),
|
237 |
-
vae=get_value_at_index(vaeloader_55, 0),
|
238 |
-
upscale_model=get_value_at_index(upscalemodelloader_44, 0),
|
239 |
)
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
246 |
)
|
247 |
-
|
248 |
-
# Return the path to the saved image
|
249 |
-
saved_path = f"output/{saveimage_43['ui']['images'][0]['filename']}"
|
250 |
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
"""
|
277 |
-
) as app:
|
278 |
-
|
279 |
-
gr.HTML("""
|
280 |
-
<div class="main-header">
|
281 |
-
<h1>π¨ AI Image Enhancer</h1>
|
282 |
-
<p>Upload an image or provide a URL to enhance it using Florence-2 captioning and FLUX upscaling</p>
|
283 |
-
</div>
|
284 |
-
""")
|
285 |
-
|
286 |
-
with gr.Row():
|
287 |
-
with gr.Column(scale=1):
|
288 |
-
gr.HTML("<h3>π€ Input Settings</h3>")
|
289 |
-
|
290 |
-
with gr.Tabs():
|
291 |
-
with gr.TabItem("π Upload Image"):
|
292 |
-
image_upload = gr.Image(
|
293 |
-
label="Upload Image",
|
294 |
-
type="filepath",
|
295 |
-
height=300
|
296 |
-
)
|
297 |
-
|
298 |
-
with gr.TabItem("π Image URL"):
|
299 |
-
image_url = gr.Textbox(
|
300 |
-
label="Image URL",
|
301 |
-
placeholder="https://example.com/image.jpg",
|
302 |
-
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
|
303 |
-
)
|
304 |
-
|
305 |
-
gr.HTML("<h3>βοΈ Enhancement Settings</h3>")
|
306 |
-
|
307 |
-
upscale_factor = gr.Slider(
|
308 |
-
minimum=1.0,
|
309 |
-
maximum=4.0,
|
310 |
-
value=2.0,
|
311 |
-
step=0.5,
|
312 |
-
label="Upscale Factor",
|
313 |
-
info="How much to upscale the image"
|
314 |
-
)
|
315 |
-
|
316 |
-
steps = gr.Slider(
|
317 |
-
minimum=10,
|
318 |
-
maximum=50,
|
319 |
-
value=25,
|
320 |
-
step=5,
|
321 |
-
label="Steps",
|
322 |
-
info="Number of denoising steps"
|
323 |
-
)
|
324 |
-
|
325 |
-
cfg_scale = gr.Slider(
|
326 |
-
minimum=0.5,
|
327 |
-
maximum=10.0,
|
328 |
-
value=1.0,
|
329 |
-
step=0.5,
|
330 |
-
label="CFG Scale",
|
331 |
-
info="Classifier-free guidance scale"
|
332 |
-
)
|
333 |
-
|
334 |
-
denoise_strength = gr.Slider(
|
335 |
-
minimum=0.1,
|
336 |
-
maximum=1.0,
|
337 |
-
value=0.3,
|
338 |
-
step=0.1,
|
339 |
-
label="Denoise Strength",
|
340 |
-
info="How much to denoise the image"
|
341 |
-
)
|
342 |
-
|
343 |
-
guidance_scale = gr.Slider(
|
344 |
-
minimum=1.0,
|
345 |
-
maximum=10.0,
|
346 |
-
value=3.5,
|
347 |
-
step=0.5,
|
348 |
-
label="Guidance Scale",
|
349 |
-
info="FLUX guidance strength"
|
350 |
)
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
356 |
)
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
interactive=False
|
373 |
)
|
374 |
-
|
375 |
-
gr.HTML("""
|
376 |
-
<div style="margin-top: 1rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
|
377 |
-
<h4>π‘ How it works:</h4>
|
378 |
-
<ol>
|
379 |
-
<li>Florence-2 analyzes your image and generates a detailed caption</li>
|
380 |
-
<li>FLUX uses this caption to guide the upscaling process</li>
|
381 |
-
<li>The result is an enhanced, higher-resolution image</li>
|
382 |
-
</ol>
|
383 |
-
</div>
|
384 |
-
""")
|
385 |
-
|
386 |
-
# Event handlers
|
387 |
-
def process_image(img_upload, img_url, upscale_f, steps_val, cfg_val, denoise_val, guidance_val):
|
388 |
-
# Determine input source
|
389 |
-
image_input = img_upload if img_upload is not None else img_url
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
|
427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
if __name__ == "__main__":
|
430 |
-
|
431 |
-
app.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import logging
|
2 |
import random
|
3 |
+
import warnings
|
4 |
+
import os
|
|
|
5 |
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
import spaces
|
8 |
+
import torch
|
9 |
+
from diffusers import FluxControlNetModel, FluxControlNetPipeline
|
10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
11 |
+
from gradio_imageslider import ImageSlider
|
12 |
+
from PIL import Image
|
13 |
+
from huggingface_hub import snapshot_download
|
14 |
+
import requests
|
15 |
+
|
16 |
+
css = """
|
17 |
+
#col-container {
|
18 |
+
margin: 0 auto;
|
19 |
+
max-width: 800px;
|
20 |
+
}
|
21 |
+
.main-header {
|
22 |
+
text-align: center;
|
23 |
+
margin-bottom: 2rem;
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Device setup
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
power_device = "GPU"
|
30 |
+
device = "cuda"
|
31 |
+
else:
|
32 |
+
power_device = "CPU"
|
33 |
+
device = "cpu"
|
34 |
+
|
35 |
+
# Get HuggingFace token
|
36 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
37 |
+
|
38 |
+
# Download FLUX model
|
39 |
+
print("π₯ Downloading FLUX model...")
|
40 |
+
model_path = snapshot_download(
|
41 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
42 |
+
repo_type="model",
|
43 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
44 |
+
local_dir="FLUX.1-dev",
|
45 |
+
token=huggingface_token,
|
46 |
+
)
|
47 |
+
|
48 |
+
# Load Florence-2 model for image captioning
|
49 |
+
print("π₯ Loading Florence-2 model...")
|
50 |
+
florence_model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
"microsoft/Florence-2-large",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
trust_remote_code=True
|
54 |
+
).to(device)
|
55 |
+
florence_processor = AutoProcessor.from_pretrained(
|
56 |
+
"microsoft/Florence-2-large",
|
57 |
+
trust_remote_code=True
|
58 |
+
)
|
59 |
+
|
60 |
+
# Load FLUX ControlNet pipeline
|
61 |
+
print("π₯ Loading FLUX ControlNet...")
|
62 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
63 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
64 |
+
torch_dtype=torch.bfloat16
|
65 |
+
).to(device)
|
66 |
+
|
67 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
68 |
+
model_path,
|
69 |
+
controlnet=controlnet,
|
70 |
+
torch_dtype=torch.bfloat16
|
71 |
+
)
|
72 |
+
pipe.to(device)
|
73 |
+
|
74 |
+
print("β
All models loaded successfully!")
|
75 |
+
|
76 |
+
MAX_SEED = 1000000
|
77 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
78 |
+
|
79 |
+
|
80 |
+
def generate_caption(image):
|
81 |
+
"""Generate detailed caption using Florence-2"""
|
82 |
try:
|
83 |
+
task_prompt = "<MORE_DETAILED_CAPTION>"
|
84 |
+
prompt = task_prompt
|
85 |
+
|
86 |
+
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(device)
|
87 |
+
|
88 |
+
generated_ids = florence_model.generate(
|
89 |
+
input_ids=inputs["input_ids"],
|
90 |
+
pixel_values=inputs["pixel_values"],
|
91 |
+
max_new_tokens=1024,
|
92 |
+
num_beams=3,
|
93 |
+
do_sample=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
97 |
+
parsed_answer = florence_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
98 |
+
|
99 |
+
caption = parsed_answer[task_prompt]
|
100 |
+
return caption
|
|
|
|
|
|
|
|
|
|
|
101 |
except Exception as e:
|
102 |
+
print(f"Caption generation failed: {e}")
|
103 |
+
return "a high quality detailed image"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
105 |
|
106 |
+
def process_input(input_image, upscale_factor):
|
107 |
+
"""Process input image and handle size constraints"""
|
108 |
+
w, h = input_image.size
|
109 |
+
w_original, h_original = w, h
|
110 |
+
aspect_ratio = w / h
|
111 |
|
112 |
+
was_resized = False
|
|
|
|
|
|
|
113 |
|
114 |
+
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
115 |
+
warnings.warn(
|
116 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
117 |
+
)
|
118 |
+
gr.Info(
|
119 |
+
f"Requested output image is too large. Resizing input to fit within pixel budget."
|
120 |
+
)
|
121 |
+
input_image = input_image.resize(
|
122 |
+
(
|
123 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
124 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
125 |
+
)
|
126 |
+
)
|
127 |
+
was_resized = True
|
128 |
+
|
129 |
+
# Resize to multiple of 8
|
130 |
+
w, h = input_image.size
|
131 |
+
w = w - w % 8
|
132 |
+
h = h - h % 8
|
133 |
|
134 |
+
return input_image.resize((w, h)), w_original, h_original, was_resized
|
135 |
+
|
136 |
+
|
137 |
+
def load_image_from_url(url):
|
138 |
+
"""Load image from URL"""
|
139 |
try:
|
140 |
+
response = requests.get(url)
|
141 |
+
response.raise_for_status()
|
142 |
+
return Image.open(requests.get(url, stream=True).raw)
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
+
raise gr.Error(f"Failed to load image from URL: {e}")
|
145 |
+
|
146 |
+
|
147 |
+
@spaces.GPU(duration=120)
|
148 |
+
def enhance_image(
|
149 |
+
image_input,
|
150 |
+
image_url,
|
151 |
+
seed,
|
152 |
+
randomize_seed,
|
153 |
+
num_inference_steps,
|
154 |
+
upscale_factor,
|
155 |
+
controlnet_conditioning_scale,
|
156 |
+
guidance_scale,
|
157 |
+
use_generated_caption,
|
158 |
+
custom_prompt,
|
159 |
+
progress=gr.Progress(track_tqdm=True),
|
160 |
+
):
|
161 |
+
"""Main enhancement function"""
|
162 |
+
# Handle image input
|
163 |
+
if image_input is not None:
|
164 |
+
input_image = image_input
|
165 |
+
elif image_url:
|
166 |
+
input_image = load_image_from_url(image_url)
|
167 |
+
else:
|
168 |
+
raise gr.Error("Please provide an image (upload or URL)")
|
169 |
+
|
170 |
+
if randomize_seed:
|
171 |
+
seed = random.randint(0, MAX_SEED)
|
172 |
+
|
173 |
+
true_input_image = input_image
|
174 |
|
175 |
+
# Process input image
|
176 |
+
input_image, w_original, h_original, was_resized = process_input(
|
177 |
+
input_image, upscale_factor
|
178 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
# Generate caption if requested
|
181 |
+
if use_generated_caption:
|
182 |
+
gr.Info("π Generating image caption...")
|
183 |
+
generated_caption = generate_caption(input_image)
|
184 |
+
prompt = generated_caption
|
185 |
+
else:
|
186 |
+
prompt = custom_prompt if custom_prompt.strip() else ""
|
187 |
|
188 |
+
# Rescale with upscale factor
|
189 |
+
w, h = input_image.size
|
190 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
|
|
191 |
|
192 |
+
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
193 |
|
194 |
+
gr.Info("π Upscaling image...")
|
195 |
+
|
196 |
+
# Generate upscaled image
|
197 |
+
image = pipe(
|
198 |
+
prompt=prompt,
|
199 |
+
control_image=control_image,
|
200 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
201 |
+
num_inference_steps=num_inference_steps,
|
202 |
+
guidance_scale=guidance_scale,
|
203 |
+
height=control_image.size[1],
|
204 |
+
width=control_image.size[0],
|
205 |
+
generator=generator,
|
206 |
+
).images[0]
|
207 |
+
|
208 |
+
if was_resized:
|
209 |
+
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
|
210 |
+
|
211 |
+
# Resize to target desired size
|
212 |
+
final_image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
213 |
+
|
214 |
+
return [true_input_image, final_image, seed, generated_caption if use_generated_caption else ""]
|
215 |
+
|
216 |
+
|
217 |
+
# Create Gradio interface
|
218 |
+
with gr.Blocks(css=css, title="π¨ AI Image Enhancer - Florence-2 + FLUX") as demo:
|
219 |
+
gr.HTML("""
|
220 |
+
<div class="main-header">
|
221 |
+
<h1>π¨ AI Image Enhancer</h1>
|
222 |
+
<p>Upload an image or provide a URL to enhance it using Florence-2 captioning and FLUX upscaling</p>
|
223 |
+
<p>Currently running on <strong>{}</strong></p>
|
224 |
+
</div>
|
225 |
+
""".format(power_device))
|
226 |
+
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column(scale=1):
|
229 |
+
gr.HTML("<h3>π€ Input</h3>")
|
230 |
+
|
231 |
+
with gr.Tabs():
|
232 |
+
with gr.TabItem("π Upload Image"):
|
233 |
+
input_image = gr.Image(
|
234 |
+
label="Upload Image",
|
235 |
+
type="pil",
|
236 |
+
height=300
|
237 |
+
)
|
238 |
+
|
239 |
+
with gr.TabItem("π Image URL"):
|
240 |
+
image_url = gr.Textbox(
|
241 |
+
label="Image URL",
|
242 |
+
placeholder="https://example.com/image.jpg",
|
243 |
+
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
|
244 |
+
)
|
245 |
+
|
246 |
+
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
247 |
+
|
248 |
+
use_generated_caption = gr.Checkbox(
|
249 |
+
label="Use AI-generated caption (Florence-2)",
|
250 |
+
value=True,
|
251 |
+
info="Generate detailed caption automatically"
|
252 |
)
|
253 |
+
|
254 |
+
custom_prompt = gr.Textbox(
|
255 |
+
label="Custom Prompt (optional)",
|
256 |
+
placeholder="Enter custom prompt or leave empty for generated caption",
|
257 |
+
lines=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
)
|
259 |
+
|
260 |
+
gr.HTML("<h3>βοΈ Enhancement Settings</h3>")
|
261 |
+
|
262 |
+
upscale_factor = gr.Slider(
|
263 |
+
label="Upscale Factor",
|
264 |
+
minimum=1,
|
265 |
+
maximum=4,
|
266 |
+
step=1,
|
267 |
+
value=2,
|
268 |
+
info="How much to upscale the image"
|
269 |
)
|
|
|
|
|
|
|
270 |
|
271 |
+
num_inference_steps = gr.Slider(
|
272 |
+
label="Number of Inference Steps",
|
273 |
+
minimum=8,
|
274 |
+
maximum=50,
|
275 |
+
step=1,
|
276 |
+
value=28,
|
277 |
+
info="More steps = better quality but slower"
|
278 |
+
)
|
279 |
|
280 |
+
controlnet_conditioning_scale = gr.Slider(
|
281 |
+
label="ControlNet Conditioning Scale",
|
282 |
+
minimum=0.1,
|
283 |
+
maximum=1.5,
|
284 |
+
step=0.1,
|
285 |
+
value=0.6,
|
286 |
+
info="How much to preserve original structure"
|
287 |
+
)
|
288 |
+
|
289 |
+
guidance_scale = gr.Slider(
|
290 |
+
label="Guidance Scale",
|
291 |
+
minimum=1.0,
|
292 |
+
maximum=10.0,
|
293 |
+
step=0.5,
|
294 |
+
value=3.5,
|
295 |
+
info="How closely to follow the prompt"
|
296 |
+
)
|
297 |
+
|
298 |
+
with gr.Row():
|
299 |
+
randomize_seed = gr.Checkbox(
|
300 |
+
label="Randomize seed",
|
301 |
+
value=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
)
|
303 |
+
seed = gr.Slider(
|
304 |
+
label="Seed",
|
305 |
+
minimum=0,
|
306 |
+
maximum=MAX_SEED,
|
307 |
+
step=1,
|
308 |
+
value=42,
|
309 |
+
interactive=True
|
310 |
)
|
311 |
|
312 |
+
enhance_btn = gr.Button(
|
313 |
+
"π Enhance Image",
|
314 |
+
variant="primary",
|
315 |
+
size="lg"
|
316 |
+
)
|
317 |
+
|
318 |
+
with gr.Column(scale=1):
|
319 |
+
gr.HTML("<h3>π Results</h3>")
|
320 |
+
|
321 |
+
result_slider = ImageSlider(
|
322 |
+
label="Input / Enhanced",
|
323 |
+
type="pil",
|
324 |
+
interactive=True,
|
325 |
+
height=400
|
326 |
+
)
|
327 |
+
|
328 |
+
with gr.Row():
|
329 |
+
output_seed = gr.Number(
|
330 |
+
label="Used Seed",
|
331 |
+
precision=0,
|
332 |
interactive=False
|
333 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
generated_caption_output = gr.Textbox(
|
336 |
+
label="Generated Caption",
|
337 |
+
placeholder="AI-generated caption will appear here...",
|
338 |
+
lines=3,
|
339 |
+
interactive=False
|
340 |
+
)
|
341 |
+
|
342 |
+
# Examples
|
343 |
+
gr.Examples(
|
344 |
+
examples=[
|
345 |
+
[None, "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg", 42, False, 28, 2, 0.6, 3.5, True, ""],
|
346 |
+
[None, "https://picsum.photos/512/512", 123, False, 25, 3, 0.8, 4.0, True, ""],
|
347 |
+
],
|
348 |
+
inputs=[
|
349 |
+
input_image,
|
350 |
+
image_url,
|
351 |
+
seed,
|
352 |
+
randomize_seed,
|
353 |
+
num_inference_steps,
|
354 |
+
upscale_factor,
|
355 |
+
controlnet_conditioning_scale,
|
356 |
+
guidance_scale,
|
357 |
+
use_generated_caption,
|
358 |
+
custom_prompt,
|
359 |
+
]
|
360 |
+
)
|
361 |
+
|
362 |
+
# Event handler
|
363 |
+
enhance_btn.click(
|
364 |
+
fn=enhance_image,
|
365 |
+
inputs=[
|
366 |
+
input_image,
|
367 |
+
image_url,
|
368 |
+
seed,
|
369 |
+
randomize_seed,
|
370 |
+
num_inference_steps,
|
371 |
+
upscale_factor,
|
372 |
+
controlnet_conditioning_scale,
|
373 |
+
guidance_scale,
|
374 |
+
use_generated_caption,
|
375 |
+
custom_prompt,
|
376 |
+
],
|
377 |
+
outputs=[result_slider, output_seed, generated_caption_output]
|
378 |
+
)
|
379 |
|
380 |
+
gr.HTML("""
|
381 |
+
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
|
382 |
+
<h4>π‘ How it works:</h4>
|
383 |
+
<ol>
|
384 |
+
<li><strong>Florence-2</strong> analyzes your image and generates a detailed caption</li>
|
385 |
+
<li><strong>FLUX ControlNet</strong> uses this caption to guide the upscaling process</li>
|
386 |
+
<li>The result is an enhanced, higher-resolution image with improved details</li>
|
387 |
+
</ol>
|
388 |
+
<p><strong>Note:</strong> Due to memory constraints, output is limited to 1024x1024 pixels total budget.</p>
|
389 |
+
</div>
|
390 |
+
""")
|
391 |
|
392 |
if __name__ == "__main__":
|
393 |
+
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|