comrender commited on
Commit
bda5b3f
·
verified ·
1 Parent(s): 8365163

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
3
  import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
- from diffusers import AutoPipelineForImage2Image
7
  import random
8
  import numpy as np
9
  import os
@@ -22,8 +22,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
22
  dtype = torch.bfloat16
23
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
24
 
25
- # Load FLUX img2img pipeline
26
- pipe = AutoPipelineForImage2Image.from_pretrained(
27
  "black-forest-labs/FLUX.1-dev",
28
  torch_dtype=dtype,
29
  token=huggingface_token
@@ -161,7 +161,7 @@ def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guida
161
  generator = torch.Generator(device=device).manual_seed(seed)
162
 
163
  # Use tiled if large, else direct
164
- if image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE:
165
  output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
166
  else:
167
  output_image = pipe(
@@ -169,10 +169,10 @@ def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guida
169
  image=image,
170
  generator=generator,
171
  num_inference_steps=num_inference_steps,
172
- width=width,
173
- height=height,
174
  guidance_scale=guidance_scale,
175
- strength=strength
176
  ).images[0]
177
  return output_image, prompt, seed
178
 
 
3
  import torch
4
  from PIL import Image
5
  from transformers import AutoProcessor, AutoModelForCausalLM
6
+ from diffusers import FluxImg2ImgPipeline
7
  import random
8
  import numpy as np
9
  import os
 
22
  dtype = torch.bfloat16
23
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
24
 
25
+ # Load FLUX img2img pipeline directly to avoid auto_pipeline issues
26
+ pipe = FluxImg2ImgPipeline.from_pretrained(
27
  "black-forest-labs/FLUX.1-dev",
28
  torch_dtype=dtype,
29
  token=huggingface_token
 
161
  generator = torch.Generator(device=device).manual_seed(seed)
162
 
163
  # Use tiled if large, else direct
164
+ if image and (image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE):
165
  output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
166
  else:
167
  output_image = pipe(
 
169
  image=image,
170
  generator=generator,
171
  num_inference_steps=num_inference_steps,
172
+ width=width if image is None else None,
173
+ height=height if image is None else None,
174
  guidance_scale=guidance_scale,
175
+ strength=strength if image is not None else 1.0 # For text2img, strength=1.0
176
  ).images[0]
177
  return output_image, prompt, seed
178